

Open and hidden charm dynamics

Elena Bratkovskaya

Institut für Theoretische Physik & FIAS, Uni. Frankfurt

5th International Workshop on heavy quark production in heavy-ion collisions

Utrecht, The Netherlands, 14 – 17 November 2012

Heavy-ion collisions are well suited to study dense and hot nuclear matter –

- the phase transition to the QGP ,
- chiral symmetry restoration,
- in-medium effects

The way to study: Experimental energy scan of different observables in order to find an ,anomalous' behaviour in comparison with <u>theory</u>

Observables :

- Excitation functions of particle yields and ratios
- **Transverse mass spectra**
- **Collective flow**
- **Dileptons**
- Open and hidden charm
- Fluctuations and correlations

••••

Microscopic transport models provide a unique dynamical description of nonequilibrium effects in heavy-ion collisions

HSD – Hadron-String-Dynamics transport approach:

• for each particle species *i* (*i* = *N*, *R*, *Y*, π , ρ , K, ...) the phase-space density f_i follows the transport equations

$$\left(\frac{\partial}{\partial t} + \left(\nabla_{\vec{p}} H\right) \nabla_{\vec{r}} - \left(\nabla_{\vec{r}} H\right) \nabla_{\vec{p}}\right) f_i(\vec{r}, \vec{p}, t) = I_{coll}(f_1, f_2, \dots, f_M)$$

with collision terms I_{coll} describing:

- elastic and inelastic hadronic reactions: baryon-baryon, meson-baryon, meson-meson
- o formation and decay of

baryonic and mesonic resonances

and strings - excited color singlet states (qq - q) or (q - qbar) -

(for inclusive particle production: BB -> X, mB ->X, X =many particles) M

 implementation of detailed balance on the level of 1<->2 and 2<->2 reactions (+ 2<->n multi-particle reactions in HSD !)
 off-shell dynamics for short-lived states

BB <-> B'B', BB <-> B'B'm mB <-> m'B', mB <-> B'

Baryons:

```
B=(p, n, Δ(1232),
N(1440), N(1535), ...)
Mesons:
m=(π, η, ρ, ω, φ, ...)
```

 very good description of particle production in pp, pA reactions
 unique description of nuclear dynamics from low (~100 MeV) to ultrarelativistic (~20 TeV) energies
 AGS NA49

SI

Open and hidden charm

Heavy flavor sector reflects the early dynamics since heavy hadrons can only be formed in the very early phase of heavy-ion collisions !

Hidden charm: J/Ψ, Ψ': Anomalous J/Ψ suppression in A+A (NA38/NA50/NA60)

J/Y ,normal' absorption by nucleons (Glauber model)

Experimental observation: extra suppression in A+A collisions; increasing with centrality

I. QGP threshold melting

[Satz et al'03]

Quarkonium dissociation temperatures:

state	${\rm J}/\psi(1S)$	$\chi_c(1P)$	$\psi'(2S)$
T_d/T_c	2.10	1.16	1.12

Dissociation energy density $\varepsilon_d \sim 2(T_d/T_c)^4$

- Charm ,chemistry': D⁺,D⁻,D⁰,D^{*+},D^{*-},D^{*0},D^{*0},D^{*0},D^{*0},D^{*0},D^{*},D^{*},D^{*+},D^{*-},J/Ψ,Ψ',χ_c
- Production σ(D), σ(J/Ψ) and σ(Ψ') in N+N and π+N collsions: parametrization of the available exp. data

Coupled channel problem: $\sigma_{J/\Psi}^{e\times p} = \sigma_{J/\Psi} + B(\chi_c \rightarrow J/\Psi) \sigma_{\chi_c} + B(\Psi' \rightarrow J/\Psi) \sigma_{\Psi}'$

• Charmonia-baryon dissociation cross sections can be fixed from p+A data:

 $J/\Psi(\chi_c, \Psi') + B \rightarrow D+Dbar +X$

σ_{cc B} = σ_{J/Ψ B} = σ_{χ B} = 4.18 mb, σ_{Ψ' B} = 7.6 mb (adopting a Glauber fit from NA50)

Charm = hard probe => binary scaling!

1. Charmonia dissociation cross sections with formed π , ρ , K and K* mesons $J/\Psi(\chi, \Psi)$ + meson (π, ρ, K, K^*) <-> D+Dbar

element

Phase-space model for charmonium + meson dissociation:

SD

$$\sigma_{1+2->3+4}(s) = g_{isospin} 2^4 \frac{E_1 E_2 E_3 E_4}{s} |\mathbf{M}_i|^2 \left(\frac{\mathbf{m}_3 + \mathbf{m}_4}{\sqrt{s}}\right)^6$$

$$i = \chi_C, \ J/\Psi, \ \Psi'$$

$$|\mathbf{M}_{J/\Psi}|^2 = |\mathbf{M}_{\chi_C}|^2 = |\mathbf{M}_{\Psi'}|^2 \left(|\mathbf{M}_0|^2\right) \text{ constant matrix}$$

Note: comover dissociation as well as DDbar recombination can occur only if the local energy density at the collision point $\varepsilon < 1 \text{GeV/fm}^3$

Charmonium recombination by D-Dbar annihilation

At SPS recreation of J/Ψ by D+Dbar annihilation is negligible

, ST

but at **RHIC** recreation of J/Ψ by D+Dbar annihilation is strong!

PRC 67 (2003) 054903

Suppression in dA at RHIC

[O. Linnyk et al., arXiv:0808.1504; Int J Mod Phys E17 (2008) 1367]

J/Ψ and Ψ' suppression in In+In and Pb+Pb at SPS: (II.) Comover absorption (+ recombination by D-Dbar annihilation)

SD

 Exp. data (NA50/NA60) for J/Ψ and
 Ψ' suppression for Pb+Pb and In+In at 160 A GeV are consistent with the comover absorption model for the same set of parameters!

> [Olena Linnyk et al., nucl-th/0612049, NPA 786 (2007) 183]

Energy density ε (x=0,y=0,z;t) from HSD for Pb+Pb collisions at 160 A GeV Energy density ε (x=0,y=0,z;t) from HSD for Au+Au collisions at 21300 A GeV

Dissociation threshold energy densities: J/ Ψ melting: $\epsilon(J/\Psi)=16$ GeV/fm³ χ_c melting: $\epsilon(\chi_c)=2$ GeV/fm³ Ψ ' melting: $\epsilon(\Psi')=2$ GeV/fm³ Melting temperature: $T(J/\Psi) < 1.6-2 T_C$ $T(\chi_c) < 1-1.2 T_C$ $T(\Psi') < 1-1.2 T_C$

Dissociation energy density: $\epsilon(J/\Psi)=16 \text{ GeV/fm}^3$, $\epsilon(\chi_c)=2 \text{ GeV/fm}^3$, $\epsilon(\Psi')=2 \text{ GeV/fm}^3$

J/\P suppression is qualitatively described,

but QGP threshold melting scenario shows a too strong Ψ ' absorption, which contradicts the NA50 data!

[Olena Linnyk et al., nucl-th/0612049, NPA 786 (2007) 183]

J/Ψ and Ψ' suppression in Au+Au at RHIC: (II.) Comover absorption (+ recombination by D-Dbar annihilation)

SI

Pure comover scenario is ruled out by PHENIX data!

J/Ψ and Ψ' suppression in Au+Au at RHIC: (I.) QGP threshold melting scenario

[Olena Linnyk et al., arXiv:0705.4443, PRC 76 (2007) 041901]

Melting model: complete dissociation of initial J/ Ψ and Ψ' due to the huge local energy densities !

Charmonia recombination by D-Dbar annihilation is important, however, it can not generate enough charmonia, especially for peripheral collisions!

QGP threshold melting scenario is ruled out by PHENIX data!

Comover absorption and threshold melting scenarios are ruled out by experimental data

evidence for non-hadronic interaction ?!

III. Pre-hadronic interaction scenario :

a early interactions of charmonium (ccbar) and D-mesons with unformed (i.e. under formation time $t = \gamma \tau_F$, $\tau_F \sim 0.8$ fm/c in the hadron rest frame) baryons and mesons - pre-hadrons

□ + comover absorption with recombination by D-Dbar annihilation

Pre-hadronic interaction scenario only ,simulates' the interactions in the QGP in the Hadron-String model without (!) explicit partonic interactions and phase transition => NOT (yet!) a consistent description ! => PHSD

J/Ψ and Ψ' suppression in Au+Au at RHIC: (III.) Pre-hadronic interaction scenario

In the prehadronic interaction scenario the J/ Ψ rapidity distribution has the right shape like the PHENIX data! => can describe the RHIC data at s^{1/2}=200 GeV for Au+Au at mid- and forward-rapidities simultaneously.

Realization of pre-hadronic interaction scenario in UrQMD

J/ Ψ and Ψ' suppression in Au+Au at RHIC

Olena Linnyk et al., arXiv:0801.4282, NPA 807 (2008) 79

PHENIX data: → evidence for non-hadronic interactions of charm degrees of freedom !

HSD: v_2 of D+Dbar and J/ Ψ from Au+Au versus p_T and y at RHIC

SI

• Pre-hadronic interactions lead to an increase of the elliptic flow v₂

• The pre-hadronic interaction scenario is ~consistent with the preliminary PHENIX data on the D-mesons v₂

=> strong initial flow of non-hadronic nature!

[Olena Linnyk et al., arXiv:0801.4282, NPA 807 (2008) 79]

Quenching of D mesons at RHIC

Evidence of additional
 high p_T suppression in –
 the most central collisions.

Suppression of D mesons in peripheral collisions is consistent with a purely hadronic scenario.

[O. Linnyk et al., arXiv:0808.1504; Int J Mod Phys E17 (2008) 1367]

- J/Ψ probes early stages of fireball and HSD is the tool to model it.
- Comover absorption and threshold melting: both reproduce J/Ψ survival in Pb+Pb as well as in In+In at SPS, while $\Psi'/J/\Psi$ data appear to be in conflict with the ,melting scenario'.
- Comover absorption and threshold melting fail to describe the RHIC data at s^{1/2}=200 GeV for Au+Au at mid- and forward-rapidities simultaneously
- Prehadronic interaction scenario can describe the RHIC data at s^{1/2}=200 GeV for Au+Au at mid- and forward-rapidities simultaneously
- STAR data on v₂ of high p_T charged hadrons and charm D mesons are not reproduced in the hadron-string picture
- → evidence for a plasma pressure ?!

Outlook I: open problems

- **Energy, rapidity, p_T dependent hadronic absorption cross sections**
- from experiments : systematic energy and system scan for p+A

Theory - modeling of parton-hadron phase transition based on IQCD EoS and off-shell parton transport: Parton-Hadron-String-Dynamics (PHSD)

✓ Work in progress - Hamza Berrehrah et al.

Open and hidden charm via dileptons

Open and hidden charm via dileptons

□ Correlated charm pair production: c-cbar \rightarrow D+Dbar

However, the initial charm correlations are partly lost due to collisional (rescattering) and radiative energy loss

Contribution to dileptons: correlated pairs and uncorrelated D-Dbar meson pairs (have a different slope)

In central collisions the correlated charm pairs are strongly suppressed

□ Modeling of charm (and beauty) production for dileptons:

based on an extended statistical hadronization model (SHM) – from Jaakko Manninen

J. Manninen, E.B., W. Cassing, O. Linnyk, Eur. Phys. J. C71 (2011) 1615

+ at **RHIC**: suppression of correlated charm pairs due to the hadronic rescattering – from HSD

O. Linnyk, W. Cassing, J. Manninen, E.B. and C.-M. Ko, PRC 85 (2012) 024910

+ at LHC: collisional and radiative energy loss – from

Pol-Bernard Gossiaux and Jörg Aichelin

O. Linnyk, W. Cassing, J. Manninen, E. L. B., P. B. Gossiaux, J. Aichelin, T. Song, C. M. Ko, arXiv:1208.1279

RHIC: s^{1/2}=200 GeV

Open and hidden charm via dileptons

PHSD vs. PHENIX data

At M> 1.2 GeV the dilepton yield from \Box open charm: D+Dbar \rightarrow e+e- \Box hidden charm: J/ $\Psi \rightarrow$ e+edominate over QGP contribution (or of the same order) !

PHSD vs. STAR data

O. Linnyk, W. Cassing, J. Manninen, E.B. and C.-M. Ko, PRC 85 (2012) 024910

Predictions for LHC

QGP(qbar-q) dominates at M>1.2 GeV

p_T cut enhances the signal of **QGP**(**qbar-q**)

□ D-, B-mesons energy loss from Pol-Bernard Gossiaux and Jörg Aichelin □ J/Ψ and Ψ' nuclear modification from Che-Ming Ko and Taesoo Song

O. Linnyk, W. Cassing, J. Manninen, E. L. B., P. B. Gossiaux, J. Aichelin, T. Song, C. M. Ko, arXiv:1208.1279

Summary and outlook II

- Open and hidden charm and bottom contribute to the dilepton production from SPS to LHC energies
- Charm has a large influence on the interpretation of dilepton data for M>1.2 GeV: charm vs. QGP
- Initial c-cbar correlations in the charm production are partly lost due to collisional (rescattering) and radiative energy loss

Outlook: Dynamical calculation of the collisional and radiative energy loss in PHSD

✓ Work in progress - Hamza Berrehrah et al.

PHSD group:

Wolfgang Cassing (Giessen Univ.) Olena Linnyk (Giessen Univ.) Volodya Konchakovski (Giessen Univ.) Vitalii Ozvenchuk (HGS-HIRe, FIAS & ITP Frankfurt Univ.) Rudy Marty (FIAS, Frankfurt Univ.) Hamza Berrehrah (FIAS, Frankfurt Univ.)

+ Jaakko Manninen (FIAS, Frankfurt Univ.)

External Collaborations: SUBATECH, Nantes Univ. : Jörg Aichelin Pol-Bernard Gossiaux

Texas A&M Univ.: Che-Ming Ko

