5th International Workshop on Heavy Quark Production in Heavy-ion Collisions 14-17 November 2012, Utrecht University

D meson azimuthal anisotropy measured with the ALICE experiment

Andrea Festanti (University and INFN, Padova) for the ALICE Collaboration

Outline of the talk

Introduction: why do we measure D meson v_2 ?

A Large Ion Collider Experiment - ALICE

D mesons selection strategy

The v₂ measurement: methods

- Systematic uncertainties
- Results

Why do we measure D meson v_2 ?

In non-central heavy ion collisions, the collision region is anisotropic in spatial coordinates, while initial momentum distribution is isotropic

Why do we measure D meson v₂?

- In non-central heavy ion collisions, the collision region is anisotropic in spatial coordinates, while initial momentum distribution is isotropic
 - Pressure gradients generated by interactions among constituents transform initial coordinate space anisotropy into a momentum anisotropy of the produced particles

Why do we measure D meson v₂?

- In non-central heavy ion collisions, the collision region is anisotropic in spatial coordinates, while initial momentum distribution is isotropic
- Pressure gradients generated by interactions among constituents transform initial coordinate space anisotropy into a momentum anisotropy of the produced particles

Azimuthal distribution of the final particles can be parametrized by a Fourier expansion with respect the n-th order reaction plane angle; coefficients are sensitive to $\frac{d^3 N}{d^3 N} = 1 - \frac{d^2 N}{d^3 N}$

equation of state

medium transport properties

$$E\frac{d^3N}{d^3\overrightarrow{p}} = \frac{1}{2\pi}\frac{d^2N}{p_t dp_t dy}\left(1 + 2\sum_{n=1}^{\infty} v_n \cos[n(\phi - \Psi_{RP})]\right)$$

$$v_n(p_t, y) = \langle \cos[n(\psi - \Psi_{RP})] \rangle$$

Why do we measure D meson v₂?

- In non-central heavy ion collisions, the collision region is anisotropic in spatial coordinates, while initial momentum distribution is isotropic
- Pressure gradients generated by interactions among constituents transform initial coordinate space anisotropy into a momentum anisotropy of the produced particles

• Azimuthal distribution of the final particles can be parametrized by a Fourier expansion with respect the n-th order reaction plane angle; coefficients are sensitive to $\frac{d^3N}{d^3N} = 1 - \frac{d^2N}{d^2N}$

equation of state

 $E\frac{d^3N}{d^3\overrightarrow{p}} = \frac{1}{2\pi}\frac{d^2N}{p_tdp_tdy}\left(1+2\sum_{n=1}^{\infty}v_n\cos[n(\phi-\Psi_{RP})]\right)$

 $v_n(p_t, y) = \langle \cos[n(\psi - \Psi_{RP})] \rangle$

- In particular, the second harmonic v₂ [elliptic flow] of heavy flavour particles brings informations about
 - possible thermalization of heavy quarks in the medium [low momentum]

path length dependence of heavy quark energy loss [high momentum]

A Large Ion Collider Experiment - ALICE

Detectors used for the analysis

- Inner Tracking System ITS: vertex and track reconstruction
- Time Projection Chamber TPC: tracks reconstruction and particle identification
- Time Of Flight TOF:
 particle identification
 - VZERO scintillators: trigger and centrality selection

② 2011 Pb-Pb collisions @ √s_{NN}=2.76 TeV
 15x10⁶ analyzed events in 0-7.5% centrality class
 7x10⁶ analyzed events in 15-30% centrality class
 9.5x10⁶ analyzed events in 30-50% centrality class

D meson selection strategy

D⁰, D⁺ and D^{*+} reconstructed in the central rapidity region [|y|<0.8] from their hadronic decay channel

 D^0 →K⁻π⁺ [BR 3.88±0.05%, cτ≈123 µm] D⁺→K⁻π⁺ π⁺ [BR 9.13±0.19%, cτ≈312 µm] D^{*}+→D⁰π⁺ [BR 67.7±0.5%]

- Selection of D⁰ and D⁺ decays is based on the reconstruction of secondary vertex topologies displaced by a few hundred µm from the interaction vertex
- In case of D^{*+}, D⁰ candidates were attached to $\pi^{+/-}$ candidate at the primary vertex

D meson selection strategy

 D^0 , D⁺ and D^{*+} reconstructed in the central rapidity region [|y|<0.8] from their hadronic decay channel

 D^0 →K⁻π⁺ [BR 3.88±0.05%, cτ≈123 µm] D⁺→K⁻π⁺ π⁺ [BR 9.13±0.19%, cτ≈312 µm] D^{*}+→D⁰π⁺ [BR 67.7±0.5%]

- Selection of D⁰ and D⁺ decays is based on the reconstruction of secondary vertex topologies displaced by a few hundred µm from the interaction vertex
- In case of D^{*+}, D⁰ candidates were attached to $\pi^{+/-\frac{b}{b}}$ candidate at the primary vertex
- Particle identification with TPC and TOF to reduce combinatorial background without any loss of signal
- Yields are extracted from an invariant mass analysis

<u>Methods</u>

$$E\frac{d^3N}{d^3\overrightarrow{p}} = \frac{1}{2\pi}\frac{d^2N}{p_t dp_t dy}\left(1 + 2\sum_{n=1}^{\infty} v_n \cos[n(\phi - \Psi_{RP})]\right)$$

- reaction plane not known
- using the event plane as an experimental estimate of the reaction plane
- Scalar product and Q-Cumulants
- +

- flow is a correlation among all particles
- use of multi-particle correlations

current statistics only allows for 2-particle methods for D mesons

Event plane estimation

Event plane angle ψ_n for each harmonics n is measured through the Q-vector using TPC tracks with 0< η <0.8 [uniform detector efficiency]

$$Q_n = \begin{pmatrix} \sum_{i=0}^N w_i \cos n\phi_i \\ \sum_{i=0}^N w_i \sin n\phi_i \end{pmatrix} \qquad \psi_n = \frac{1}{n} \tan^{-1} \left(\frac{Q_{n,y}}{Q_{n,x}}\right)$$

• Tracks weights are determined as a function of p_T , η , track charge and run number from the Φ angle distribution

Event plane estimation

Event plane angle ψ_n for each harmonics n is measured through the Q-vector using TPC tracks with 0< η <0.8 [uniform detector efficiency]

$$Q_n = \begin{pmatrix} \sum_{i=0}^N w_i \cos n\phi_i \\ \sum_{i=0}^N w_i \sin n\phi_i \end{pmatrix} \qquad \psi_n = \frac{1}{n} \tan^{-1} \left(\frac{Q_{n,y}}{Q_{n,x}}\right)$$

- Tracks weights are determined as a function of *p*_T,
 η, track charge and run number from the Φ angle distribution
- Due to finite number of detected particles the resolution in angle is limited; to get the real v_n, v_n^{obs} must be corrected for the resolution

$$v_n^{obs} = \langle \cos n(\phi_i - \psi_n) \rangle$$
 $v_n = \frac{v_n^{obs}}{\langle \cos n(\psi_n - \Psi_{RP}) \rangle}$

The event plane resolution is computed using two sub-events obtained from one full event split in two random subsets with same multiplicity and covering equal **n** regions

Event plane based method

- in-plane: (0, π/4] υ [3π/4, π)
- 🔶 out-of-plane: (π/4, 3π/4]

 Fit the invariant mass distributions to extract number of candidates in-plane and out-ofplane [v₂ computed from azimuthal asymmetry]

D⁰ invariant mass distributions

Scalar Product and Q-Cumulants

<u> V2 fit</u>

- \bigcirc Total v₂ is calculated with multi-particle algorithms as a function of invariant mass
- Simultaneous fit of the yields and v₂ as a function of mass

$$v_2^{sgn} = \frac{N^{tot}}{N^{sgn}} v_2^{mea} - \frac{N^{bkg}}{N^{sgn}} v_2^{bkg}$$

- Invariant mass distributions fitted with a gaussian + background function
- v₂^{bkg} shape is a function linearly dependent on the mass

Systematic uncertainties

<u>Sources</u>

Yield extraction from the invariant mass distributions

0.01 - 0.04 absolute value Cut variation [it tests the stability extraction against variation of significance and S/B of the D meson peak]

v2bkg parametrization [scalar product and Q-cumulants]

Event plane resolution

- Centrality dependence
- Difference between R₂ estimation methods

D meson from B feed-down contribution

B feed-down

Measured D meson yield includes

- 🔶 prompt D meson
- D from beauty hadron decay
- The measured v_2 is therefore given by:

$$v_2 = f_{prompt}v_2^{prompt} + (1 - f_{prompt})v_2^{feed-down}$$

 f_{prompt} is the fraction of D mesons promptly produced in the measured yield [estimated using FONLL predictions and Monte Carlo efficiencies]

$$f_{prompt} = \left(1 + \frac{(Acc \times \epsilon)_{feed-down}}{(Acc \times \epsilon)_{prompt}} \times \frac{\left(\frac{d^2\sigma}{dydp_t}\right)_{feed-down}^{FONLL}}{\left(\frac{d^2\sigma}{dydp_t}\right)_{prompt}^{FONLL}} \times \frac{R_{AA}^{feed-down}}{R_{AA}^{prompt}}\right)^{-1}$$

 $\bigcirc \quad \text{Hypothesis: } R_{AA}^{feed-down} = R_{AA}^{prompt}$

Systematic uncertainty determined varying the hypothesis in the range: $0.5 < R_{AA}^{feed-down}/R_{AA}^{prompt} < 2$

B feed-down

Measured D meson yield includes

- prompt D meson
- D from beauty hadron decay

• The measured v_2 is therefore given by:

$$v_2 = f_{prompt} v_2^{prompt} + (1 - f_{prompt}) v_2^{feed-down}$$

v₂^{feed-down} of D mesons from B decays is unknown

D meson v₂ determined assuming

ne Standard Contractor	
teed-down	nromnt
	$- n^{prompt}$
$U_{\mathbf{j}}$	$- u_{2}$
4	

Assigned asymmetric systematic uncertainty that spans the range

$$0 < v_2^{feed-down} < v_2^{prompt}$$

<u>D⁰ v₂ - event plane method</u>

Indication of non-zero v₂ for D⁰ mesons in 2-6 GeV/c in 30-50%

D⁰ v₂ - all methods

Consistency of v₂ measurements with the three methods

D⁰, D⁺, D^{*+} and charged hadrons v₂

- \bigcirc Consistency of the measured v₂ of the three different mesons
- D meson v₂ comparable and of the same magnitude of charged hadrons v₂ measured with ALICE

D⁰ v₂ centrality dependence

- In 30-50% v_2 larger than in more central collisions
- Hint of v_2 increasing from central to more peripheral collisions [as expected] in 2-3 and 3-4 GeV/c p_T bins

Comparison with models

- IBAMPS and 2Coll+LPM rad seem to describe consistently v₂ but underestimate R_{AA} [1Uphoff et al. arXiv: 1112.1559, 2Aichelin et al. Phys. Rev. C 79 (2009) 044906]
- WHDG and ⁴Beraudo et al might underestimate v₂ but describe well R_{AA} [³Horowitz et al. J.Phys. G38, 124064 (2011), ⁴Alberico et al. Eur. Phys J. C 71, 1666 (2011)]
 - ⁵Rapp et al seems to underestimate both v₂ and suppression [⁵He, Fries and Rapp, arXiv: 1204.4442[nucl-th]]

RAA vs Event Plane

- Raw yields in-plane and out-of-plane in 30-50%
- Efficiency feed-down correction
- pp reference measured at $\sqrt{s}=7$ TeV, scaled to $\sqrt{s}=2.76$ TeV

 $R_{AA}^{in(out)}(p_T) = 2 \frac{dN_{AA}^{in(out)}/dp_T}{\langle T_{AA} \rangle \times d\sigma_{pp}/dp_T}$

More suppression out-of-plane with respect to in-plane:

consistent with measured non zero $D^0 v_2$

elliptic flow at low p_T ?

longer path length at high p_T ?

1.2

0.8 0.6

0.4 0.2

0

ALI-PREL-33131

2

4

6

8

Conclusions

√s_{NN}=2.76 TeV -

Centrality 30-50%

Empty box: syst. from data

Filled box: syst. from B feed-down

Filled box: syst. from B feed-down-

Out Of Plane

50

Centrality (%)

ed syst. uncertainties

elated syst. uncertinties I norm uncerta

40

14

16

√s_{NN}=2.76 TeV

p₋ (GeV/c)

18

Pb-Pb

10

30

10

12

14

16

18

p_T (GeV/c)

20

12

Pb-Pb

First measurement of D meson azimuthal anisotropy at LHC

> compatibility of the results obtained with different methods

non-zero v₂ in 2-6 GeV/c

Hint of v_2 increasing from 0-7.5% to 30-50%

Measurement of $D^0 R_{AA}$ vs event plane: azimuthal dependence of the suppression

Backup

Scalar product and Q-cumulants

Scalar product

It estimates the v₂ on the basis of the scalar product beetween the unit vector associated to the D meson u and the flow vector Q

$$v_2(\eta, p_t) = \frac{\langle u^*(\eta, p_T) \frac{Q_2}{M} \rangle}{\sqrt{\langle \frac{Q_2^{*a}}{M^a} \frac{Q_2^{*b}}{M^b} \rangle}} \qquad \qquad u = e^{2i\phi}$$
$$Q_2 = \sum_{i=1}^M e^{2i\phi_i}$$

- Particles used for computing the flow vector come from TPC
- The decay tracks of the D meson are excluded from the flow vector
- a and b denote two indipendent sub-events

Q-cumulants

Involve quantities which do not depend on event plane orientation