Heavy-Flavour Correlation Measurements in pp and Pb-Pb Collisions with ALICE

Sarah LaPointe for the ALICE collaboration

5th International workshop on heavy quark production in heavy-ion collisions

Utrecht University 16 November 2012

Outline

- Motivation for heavy-flavour correlation measurements
- The ALICE detector
- Azimuthal angular correlation measurements
 - HF electron-hadron in 2.76 TeV pp collisions
 - Relative beauty fraction
 - Beauty to electron cross section
 - Outlook in Pb-Pb collisions
 - D*+ mesons -hadron in 7 TeV pp collisions
 First studies Comparison of MC and data
 - Conclusions/Outlook

Why HF correlation studies?

pp collisions

Disentangle charm and beauty within HF single electrons → Measure beauty to HF decay electrons cross section Important tests of pQCD predictions All correlation measurements baseline for Pb-Pb Production mechanism (pair production, gluon splitting)

Pb-Pb collisions

Measure I_{AA} -ratio of yields of Pb-Pb to pp collisions - Away side- Energy loss via I_{AA} - Near side- Fragmentation via I_{AA}

Correlation measurements in ALICE

> HF electron- hadron
> D meson- hadron
> HF electron- D meson

9.6%

56.5%

ALICE Detector

e-h correlations

e-h Correlation Motivation

ALICE measurement of D meson R_{AA} shows a maximum suppression factor of 5 at p_T of 7 GeV/c (talk by A. Grelli)

ALICE measurement of HF decay electron and muon R_{AA} reach a suppression factor 3-4 (talk by T. Rascanu and P. Pillot, respectively)

• pp $\Delta \phi$ correlation between HF electrons and hadrons used to determine the relative contribution of B decays to HF electrons

• Exploit different decay kinematics of D and B mesons, where the width of near-side correlation distribution is wider for B meson compared to D meson

• Relative beauty contribution extracted by fitting MC (PYTHIA) templates (with detector simulation) to data.

STAR measurement using the same technique Phys. Rev. Lett. 105, 202301 (2010) PHENIX using a correlation in M_{inv} Phys. Rev. Lett. 103, 082002, (2009).

e-h Correlation Motivation

Using relative beauty fraction and inclusive cross section of HF-decay electrons, the cross sections of beauty and charm decay electrons can be computed separately.

• Alternative analysis method to direct measurements using displaced vertices (talk by T. Aronsson and arXiv:1208.1902)

• In Pb-Pb collisions, azimuthal angular correlations between heavy flavour electron and charged hadrons can be used to study energy loss and possible fragmentation modification in the QCD medium

e-h Correlation Analysis Strategy

- Electron identification
 - TPC dE/dx and EMCal E/p
- Non-HF electron identification
 - Conversions and π^0 and η Dalitz decays
 - Invariant mass method

Heavy flavor electrons (HFE)

- Azimuthal angular correlation between HFE and hadrons
- Distinguish charm and beauty contribution
 - Monte Carlo templates
 - Fit to the data

Dataset:

- pp at $\sqrt{s} = 2.76 \text{ TeV}$
- EMCal triggered events
- Statistics : 620k events,

Integrated luminosity = 14.8 nb^{-1}

ALTCE

Electron identification

EMCal acceptance

- $|\eta| < 0.7$
- $80 < \varphi < 180$

TPC: $-1 < N\sigma < 3$ EMCal: 0.8 < E/p < 1.2

Non-HF electron identification

- Non-heavy flavour electrons
 - Primary background sources: γ conversion, π^0 and η Dalitz decays
 - Identify background using e⁺e⁻ invariant mass
 - Tag non-HF with $M_{ee} < 50 \text{ MeV}/c^2$
 - Non-HF reconstruction efficiency ~ 50%

Azimuthal angular e-h correlations

$$\widehat{V}_{e}^{HF}$$
 $N_e^{HF} = N_e^{inclusive} - N_e^{reco.\ nonHF} - \left(\frac{1}{\epsilon} - 1\right) N_e^{reco.\ nonHF}$
 $where\left(\frac{1}{\epsilon} - 1\right) N_e^{reco.\ nonHF} \longrightarrow$ Not reconstructed non-HFF

$$\Delta \phi = \Delta \phi^{inclusive} - \Delta \phi^{reco.\ nonHF} - \left(\frac{1}{\epsilon} - 1\right) \Delta \phi^{reco.\ nonHF}$$

- Fit data with MC template for beauty and charm (PYTHIA + GEANT3)
- Fit function : $\Delta \phi_{data} = \text{const.} + r_b \Delta \phi_B + (1-r_b) \Delta \phi_D$ where $r_b = \text{Ne}_B / (\text{Ne}_D + \text{Ne}_B)$ const. = uncorrelated background.

3 3)

¹²

Azimuthal angular e-h correlations

- Fit data with MC template for beauty and charm (PYTHIA + GEANT3)
- Fit function : $\Delta \phi_{data} = \text{const.} + r_b \Delta \phi_B + (1-r_b) \Delta \phi_D$ where $r_b = \text{Ne}_B / (\text{Ne}_D + \text{Ne}_B)$ const. = uncorrelated background.

Fraction of beauty decay electrons

Main source of systematics:

- eID using TPC and EMCal
- Fit range: (-1,1) to (-2.5,2.5) rad.
- Non-HFE identification
 - inv. mass and dE/dx cut

At 5 GeV/c the beauty contribution is comparable to charm. Consistent with FONLL pQCD calculations

M. Cacciari et al., JHEP 0103, 006 (2001) and private communication (2012)

Fraction of beauty decay electrons

Main source of systematics:

- eID using TPC and EMCal
- Fit range: (-1,1) to (-2.5,2.5) rad.
- Non-HFE identification
 - inv. mass and dE/dx cut

At 5 GeV/c the beauty contribution is comparable to charm. Consistent with FONLL pQCD calculations

M. Cacciari et al., JHEP 0103, 006 (2001) and private communication (2012)

Consistent with RHIC measurements

Phys. Rev. Lett. 105, 202301 (2010)

15 Phys. Rev. Lett. 103, 082002, (2009).

Beauty and charm decay cross sections

- HFE decay electron cross section
- Relative beauty fraction to the HFE yield (r_b)
- Beauty and charm to electron cross section can be calculated.

Dataset : pp at $\sqrt{s}=2.76$ TeV EMCal triggered events

Electron ID using TPC and EMCAL

$$\left(\frac{d\sigma}{dp_T}\right)_{c \to e} = \left(\frac{d\sigma}{dp_T}\right)_{b+c \to e} - \left(\frac{d\sigma}{dp_T}\right)_{b \to e}$$

Beauty and charm decay cross sections

 $b \rightarrow e$

 $c \rightarrow e$

ALICE

- r_b not measured in full p_T range
- Consistent with FONLL pQCD calculations

Outlook e-h correlations in Pb-Pb

- Uncorrected heavy flavour decay e-h $\Delta \phi$ distribution is shown
- Comparison to di-hadron measurement from ALICE

Next steps:

1. Remove uncorrelated background and flow contribution to obtain fully corrected HFE-h $\Delta\varphi$ distribution

2. Comparison with di-hadron $\Delta \phi$ distribution I_{AA} measurement

ALICE Collaboration, PRL 108,092301(2012)

D*-h correlations

D*-h Correlation Analysis

Similar motivation

energy loss and fragmentation mechanisms of heavy quarks pp provides the baseline for Pb-Pb collisions

Strategy

- D*+ reconstruction
 Invariant mass method
- Azimuthal angular correlation between D*+ and hadrons
- Identify background of $\Delta \phi$ distribution using invariant mass side-bands
- Correct for detector effects with event mixing

D*⁺ reconstruction

Decay channel: $D^* \rightarrow D^0(K\pi)\pi$

Reconstruction: D⁰ decay vertex identification (topological info)

Combinatorial background: topological cut criteria and PID (3σ TOF & 2σ TPC)

Candidates: 3σ around the peak in the mass difference M(K $\pi\pi$) - M(K π)

D* mesons are ideal for D-hadron correlation studies because of the relatively high signal-to-background ratio

Background Estimation & Detector Effects

Background

Estimated from D⁰ Minv side bands $4\sigma < |M(K\pi)-M(D^0)| < 10\sigma$

ALICE

Background reproduced well by associating fake D^0 to π

Detector Effects

Event mixing technique - Mixing events with similar multiplicity and primary vertex z - In $\Delta \phi$, mixed events show a flat distribution within 2-3%, w.r.t peak at (0,0)

D*-h correlation results - MC

Associated hadrons

From charm - mostly on the away side From beauty - mostly on the near side

D*-h correlation results - Data

Correlation signal visible for both selected candidates and background (sideband)

Fitting procedure:
1. Fit the background
2. Fix the parameters of the background function
3. Fit the overall distribution

extract parameters of the signal

Prospects

pp: 2012 jet-triggered data sample should enhance the statistics. Study as a function of the $D^{*+} p_{T.}$

Conclusions

e-h

Relative beauty fraction to the HF decay electron yield is measured in pp collisions at 2.76 TeV in p_T 2.5-10 GeV/c with the ALICE detector using an EMCAL trigger

Relative beauty fraction is well described by FONLL calculations and comparable to previous RHIC results at 0.2 TeV

 \Box Beauty and charm decay electron cross section is measured in pp collisions at 2.76 TeV in the $p_T = 3-9$ GeV/c range.

D*-h

 \Box D*-hadron correlations analysis is well advanced - extraction of the parameters of the correlation in pp is ongoing

Target for all HF correlation measurements in Pb-Pb: Modification of near-side and away-side peak (*I*_{AA}) compared to pp

Backup

HF program in ALICE

Mid rapidity ($|\mathbf{\eta}| < 0.9$)

D mesons (D^0, D^+, D^*, D_s) via hadronic decays

- Select on displaced vertices using TPC and ITS
- Particle ID using TPC and TOF
- Invariant mass analysis

Single electrons from semi-leptonic D and B decays

- e ID using EMCal ,TRD,TPC, and TOF
- Background estimated from MC cocktail or e⁺e⁻ M_{inv} method
- Displaced electrons using ITS (B tagging)

Forward rapidity $(2.5 < \eta < 4)$

Single muons from semi-leptonic D and B decays

Muon spectrometer

• Background primary π , K decays. In pp estimated using MC, in Pb-Pb extrapolated from measured π , K at mid rapidity

Outlook e-h correlations

Analysis using electrons identified with TPC+TOF

- MB events
- Lower $p_{\rm T}$ reach
- Systematic checks ongoing

ALICE

Beauty and charm decay Xsection at 2.76 TeV

Dataset : pp at $\sqrt{s}=2.76$ TeV EMCal triggered events

Electron ID using TPC and EMCAL

<u>Corrections applied:</u> Tracking efficiency and unfolding PID efficiency and purity High tower trigger efficiency

- Non-HFE identified using cocktail method.
 - Use η/π cross section measurement as input
 - Background cocktail generated contain significant sources of background electrons
- Main Systematic sources:
 Background cocktail
 - Background cocktail
 - • $p_{\rm T}$ unfolding
 - PID purity and efficiency
 - •HT trigger efficiency

