

Quarkonium production measurement in Pb-Pb collisions with the ALICE experiment at the LHC

Lizardo Valencia Palomo

Institut de Physique Nucléaire d'Orsay (CNRS-IN2P3, Université Paris-Sud 11)

for the ALICE collaboration

5th International Workshop on Heavy Quark Production in Heavy-ion Collisions

Utrecht University, Netherlands

November 14-17, 2012

Outline

- ➤ Physics motivations.
- ➤ The ALICE experiment.
- > Analysis:
 - \Box J/ ψ \rightarrow ee (|y| < 0.9).
 - $\Box J/\psi \to \mu\mu \ (2.5 < y < 4.0).$
- > Results:
 - \Box J/ ψ R_{AA} vs N_{part} , y and p_{T} .
 - \Box J/ ψ < $p_{\rm T}$ >.
- $\triangleright \psi(2S) \rightarrow \mu\mu$.
- > Conclusions.

Quarkonium in A-A

- Ultrarelativistic heavy-ion collisions → high energy densities.
- Quark Gluon Plasma: deconfined state of quarks and gluons.

Quarkonium as a probe of deconfinement:

- ✓ Created in the early stages of the collision.
- ✓ Suppressed by Debye screening.
- ✓ Different radii & bounding energies → sequential suppression.

Quarkonium in A-A

- Ultrarelativistic heavy-ion collisions → high energy densities.
- Quark Gluon Plasma: deconfined state of quarks and gluons.

Quarkonium as a probe of deconfinement:

- ✓ Created in the early stages of the collision.
- ✓ Suppressed by Debye screening.
- ✓ Different radii & bounding energies → sequential suppression.

- □ Significant J/ψ suppression beyond the Cold Nuclear Matter effects.
- \square Suppression is practically \sqrt{s} independent.
- ☐ Is quarkonium regeneration playing a role?

$$R_{\mathrm{AA}} = \frac{Y_{\mathrm{A-A}}^{J/\psi}}{\langle N_{Coll} \rangle Y_{pp}^{J/\psi}}$$

Quarkonium in A-A

- Ultrarelativistic heavy-ion collisions → high energy densities.
- Quark Gluon Plasma: deconfined state of quarks and gluons.

Quarkonium as a probe of deconfinement:

- ✓ Created in the early stages of the collision.
- ✓ Suppressed by Debye screening.
- ✓ Different radii & bounding energies → sequential suppression.

What can we expect at the LHC?

- 1. New collision energy regime
 - → larger suppression?
- 2. $N_{c\bar{c}}$ /central collision $\approx 10 \times \text{RHIC}$
 - → measurable effects from regeneration?

The ALICE experiment

The ALICE experiment

The ALICE experiment

Trigger, event selection and centrality

 $> J/\psi \rightarrow ee:$

2010 + 2011 data set: Minimum Bias (MB) and centrality triggered events \rightarrow L_{int} \approx 15 μ b⁻¹.

2010 MB trigger: signal in two hodoscope scintillators (V0A and V0C) and in the outer layer of a pixel detector (SPD) \rightarrow $L_{int} \approx 2 \ \mu b^{-1}$.

2011 Centrality triggered events \rightarrow L_{int} \approx 15 µb⁻¹.

 \triangleright J/ ψ , ψ (2S) $\rightarrow \mu\mu$:

2011 data set: dimuon events from the muon trigger, $L_{int} \approx 70 \ \mu b^{-1}$.

Centrality estimation is based on a Glauber model fit of the V0 amplitude.

pp measurement at $\sqrt{s} = 2.76 \text{ TeV}$

Reference from pp collisions is needed!

Both at forward and midrapity.

2.5 < y < 4.0: NRQCD calculations describe the measured $d^2\sigma/dydp_T$ at 7 and 2.76 TeV.

pp reference is the main source of systematics in the R_{AA} :

- 9% for $J/\psi \rightarrow \mu\mu$.
- 26% for $J/\psi \rightarrow ee$.

$J/\psi \rightarrow ee$ in Pb-Pb: Analysis

- \checkmark J/ψ yield obtained by subtracting the background from the opposite sign dielectron invariant mass spectrum using the mixed event technique.
- ✓ The MC signal includes the bremsstrahlung of the electrons in the detector material.
- ✓ Signal extracted in three centrality bins: 0-10%, 10-40% and 40-80%.

$J/\psi \rightarrow ee$ in Pb-Pb: Analysis

- \checkmark J/ψ yield obtained by subtracting the background from the opposite sign dielectron invariant mass spectrum using the mixed event technique.
- ✓ The MC signal includes the bremsstrahlung of the electrons in the detector material.
- ✓ Signal extracted in three centrality bins: 0-10%, 10-40% and 40-80%.
- ✓ Efficiency computed using HIJING enriched with J/ψ .
- ✓ Little dependence on the centrality.

2011 statistics allows the extraction of J/ ψ yields in narrow y, p_T and centrality bins.

Yield extracted by fitting the unlike sign invariant dimuon mass spectrum:

- ✓ Signal: modified Crystal Ball.
- ✓ Background: different functions. Also subtracted using the event mixing technique.

Results are then combined to obtain a mean weighted $N_{J/\psi}$ and to extract systematic uncertainties on signal extraction.

2011 statistics allows the extraction of J/ ψ yields in narrow y, p_T and centrality bins.

Yield extracted by fitting the unlike sign invariant dimuon mass spectrum:

- ✓ Signal: modified Crystal Ball.
- ✓ Background: different functions. Also subtracted using the event mixing technique.

Results are then combined to obtain a mean weighted $N_{J/\psi}$ and to extract systematic uncertainties on signal extraction.

2011 statistics allows the extraction of J/ ψ yields in narrow y, p_T and centrality bins.

Yield extracted by fitting the unlike sign invariant dimuon mass spectrum:

- ✓ Signal: extended Crystal Ball.
- ✓ Background: different functions. Also subtracted using the event mixing technique.

Results are then combined to obtain a mean weighted $N_{J/\psi}$ and to extract systematic uncertainties on signal extraction.

Acceptance x efficiency values are obtained by embedding MC J/ ψ into real events.

Rapidity bins: detector acceptance.

2011 statistics allows the extraction of J/ ψ yields in narrow y, p_T and centrality bins.

Yield extracted by fitting the unlike sign invariant dimuon mass spectrum:

- ✓ Signal: extended Crystal Ball.
- ✓ Background: different functions. Also subtracted using the event mixing technique.

Results are then combined to obtain a mean weighted $N_{J/\psi}$ and to extract systematic uncertainties on signal extraction.

Acceptance x efficiency values are obtained by embedding MC J/ ψ into real events.

Rapidity bins: detector acceptance.

Weak centrality dependence.

Results: $J/\psi R_{AA}$ vs centrality

- No significant centrality dependence within errors.
- No significant centrality dependence for $N_{part} > 100$.

Results: $J/\psi R_{AA}$ vs centrality

- No significant centrality dependence within errors.
- No significant centrality dependence for $N_{part} > 100$.
- R_{AA} in the most central collision from ALICE is ~3 times larger than at PHENIX.
- $R_{AA}^{ALICE} \sim 3 \times R_{AA}^{PHENIX}$ for $N_{part} > 200$.

Results: $J/\psi R_{AA}$ vs centrality

- Statistical Hadronisation Model: prediction for two $d\sigma_{c\bar{c}}/dy$.
- Transport Models: different rate equations of J/ ψ dissociation and regeneration in QGP, in both cases more than 50% of measured yield in the most central collisions due to J/ ψ regeneration, the rest is from initial production.
- Green band: includes shadowing, comovers and recombination.
- Need to measure Cold Nuclear Matter effects.

Results: $J/\psi R_{AA}$ vs centrality, y bins

 $R_{\rm AA}$ decreases by 40% from y = 2.5 to y = 4.

Same centrality behavior at forward *y*.

Results: $J/\psi R_{AA}$ vs centrality, y bins

 $R_{\rm AA}$ decreases by 40% from y = 2.5 to y = 4. Same centrality behavior at forward y.

Hint of smaller suppression at mid rapidity than at forward rapidity in the most central collisions.

Results: $J/\psi R_{AA}$ vs centrality, y bins

 $R_{\rm AA}$ decreases by 40% from y = 2.5 to y = 4. Same centrality behavior at forward y.

Hint of smaller suppression at mid rapidity than at forward rapidity in the most central collisions.

 J/ψ less suppressed if shadowing calculations are considered.

Weaker *y* dependence predicted by shadow. + comovers + recombination.

Cold Nuclear Matter effects need to be quantified!

Results: $J/\psi R_{AA}$ vs centrality, p_T bins

- Stronger suppression for high- p_T J/ ψ .
- No centrality dependence for low- p_T J/ ψ when $N_{part} > 100$.

Results: $J/\psi R_{AA}$ vs centrality, p_T bins

- Stronger suppression for high- p_T J/ ψ .
- No centrality dependence for low- p_T J/ ψ when $N_{part} > 100$.
- Consistent behavior with (re)combination.
- Good agreement between data and Transport Model.
- Around 50% of the low- p_T J/ ψ are produced by (re)combination.
- For high- p_T J/ ψ this contribution is very small.

Results: J/ ψ R_{AA} vs p_T , centrality bins

Stronger suppression for high- p_T J/ ψ .

Stronger p_T dependence for central collisions.

Results: $J/\psi R_{AA}$ vs p_T , centrality bins

Very good agreement with Transport Models.

Stronger p_T dependence for central collisions.

Discrepancy between model and data at low- p_T in peripheral collisions.

Regeneration at work in the low- p_T regime.

Results: $J/\psi < p_T >$

$$< p_{\rm T} >$$
 values were obtained by fitting $\frac{d^2N}{dydp_{\rm T}} \propto \frac{p_{\rm T}}{\left[1 + (p_{\rm T}/p_0)^2\right]^n}$ in three

different centrality bins. Low- p_T excess in the most peripheral bin due to non-hadronic production.

Results: $J/\psi < p_T >$

$$< p_{\rm T} > \text{values were obtained by fitting} \quad \frac{d^2N}{dydp_{\rm T}} \propto \frac{p_{\rm T}}{\left[1 + (p_{\rm T}/p_0)^2\right]^n} \quad \text{in three}$$

different centrality bins. Low- p_T excess in the most peripheral bin due to nonhadronic production.

ALICE: clear decrease of $\langle p_{\rm T} \rangle$ increasing N_{part}.

This confirms the observation that low- p_T J/ψ are less suppressed in central collisions.

Striking difference with respect to lower energy results!

$$\psi(2S) \rightarrow \mu\mu$$

Low significance for $\psi(2S)$, both in pp and Pb-Pb.

Signal extraction only possible in 2 p_T bins:

- $0 < p_T < 3 \text{ GeV/c: } 20-40\%, 40-60\% \text{ and } 60-90\%.$
- $3 < p_T < 8 \text{ GeV/c} : 0-20\%$ and 20-60%.

S/B in Pb-Pb: between 0.01 and 0.3 from 20-40% to 60-90% centrality.

$\psi(2S) \rightarrow \mu\mu$

ALICE used pp at \sqrt{s} = 7 TeV as reference: small \sqrt{s} and y dependence from $[\psi(2S) / J/\psi]_{pp}$ results by CDF, LHCb and CMS taken into account in the systematic uncertainty (~ 15%).

Dashed lines show the error on the pp reference: CMS used pp at \sqrt{s} = 2.76 TeV.

Signal extraction and MC inputs for Acceptance x Efficiency corrections are the main source of systematics (some others vanish in the double ratio).

No decisive conclusion on the $\psi(2S)$ enhancement/suppression vs N_{part} due to large statistical and systematic uncertainties.

Excluded large enhancement in the most central collisions.

Conclusions

- \square ALICE results vs N_{part} show a different behavior relative to RHIC energies:
 - o Flat centrality dependence in all rapidities ($N_{part} > 100$ at forward y).
 - o $R_{AA}^{ALICE} \sim 3 \times R_{AA}^{PHENIX}$ for the most central collisions.
 - ☐ Hint of smaller suppression at mid rapidity than at forward rapidity in the most central collisions.
 - \Box Stronger suppression for high- p_T J/ ψ relative to the low- p_T ones.
 - \Box < $p_{\rm T}$ > decreases with increasing centrality collision, opposite behavior compared to lower energy results.
 - ☐ Comparisons to models point to (re)generation.
 - ☐ Important to measure Cold Nuclear Matter effects.

Backup

The ALICE Muon Spectrometer

Located in the forward rapidity region and with a full azimuthal coverage, it is composed by:

• Absorbers:

- a) Front absorber.- Absorbs hadrons, photons and electrons.
- b) Beam shield.- Protects from particles produced at large *y*.
- c) Iron wall.- Absorbs hadrons that punch-through the frontal absorber.
- Magnetic dipole.- 3 T·m integrated magnetic field, bends charged particles allowing to extract the sign of their electric charge and momentum.

- Tracking chambers.- Spatial resolution, in bending coordinate, better than 100 μm in order to identify and disentangle the Y family (100 MeV resolution).
- Trigger chambers.- Timing resolution of 1-2 ns and latency of 700 ns (LØ trigger), can trigger likesign and unlikesign events.

R_{AA} vs Centrality, y bins

R_{AA} vs Centrality, p_T bins

R_{AA} vs p_T , centrality bins

Systematic uncertainties: Concepts & values

Concept	Value (%)
Luminosity pp	1.9
R factor pp	3.0
Normalization (MUL → MB)	2.1
Trigger	6.4
Tracking	6.0
Matching	2.0
MC input	5.0

Systematic uncertainties: Integrated R_{AA}

Corr. systematics: MC input + Matching + Tracking + Trigger + Normalization + J/ψ pp + pp Lumi.

Unc. systematics: n J/ ψ + T_{AA} + Tracking + Trigger.

Statistics: n J/ ψ .

Corr. systematics: Normalization + pp Lumi + T_{AA} + corr. J/ψ pp.

Unc. Systematics: n J/ ψ + nMB + Tracking + Trigger + MC input + Matching + non corr. J/ ψ pp.

Statistics: n $J/\psi + J/\psi$ pp.

In the plots:

Statistics: vertical line at each point.

Unc. systematics: shaded area at each point.

Corr. Systematics: written at the top.

vs centrality

vs $p_{\rm T}/y$

Systematic uncertainties: Multidimensional R_{AA}

Unc. systematics: n J/ ψ . P.C. systematics: MC input + Matching + Tracking + Trigger + TAA + unc. I/10 pp TAA + unc. J/ψ pp. Unc. systematics: n J/ ψ + unc. J/ ψ pp. P.C. systematics: MC input + Matching + Tracking + Trigger + TAA. Corr. systematics: Normalization + corr. J/ψ pp. Statistics: n J/ ψ + J/ ψ pp .

In the plots:

Statistics: vertical line.

Unc. systematics: shaded area at each point.

P.C. systematics: boxes at each point, Corr. Systematics: written at the top.

Effect of non-prompt J/ ψ on ALICE R_{AA}

Non-prompt fraction of the inclusive J/ ψ yield in pp at mid rapidity (f_B): CDF vs CMS: increase of 5% and p_T independent.

Assume:

- 1. Linear increase of $f_B(\sqrt{s})$.
- 2. It does not depend on the *y* region.

$$f_{\rm B}(p_{\rm T})$$
 for \sqrt{s} = 2.76 TeV

b-hadron suppression factor in Pb-Pb (*q*)? $R_{AA}^D \approx 0.3$ for 2 < p_T < 16 GeV/c (JHEP09 (2012) 112) → 'Dead cone effect': $R_{AA}^B > R_{AA}^D$.

0.2 < q < 1 is used

Effect of non-prompt J/ ψ on ALICE R_{AA}

$$R_{\text{AA}}^{\text{prompt}}(p_{\text{T}}) = \frac{R_{\text{AA}}^{\text{incl}} - f_B q}{1 - f_B}$$
 \Rightarrow small effect on the inclusive J/ ψ R_{AA} results.

Similar study can be carried out for R_{AA} vs y: LHCb shows $f_{B}(y)$ decreases with increasing rapidity.

 \rightarrow Difference between inclusive and prompt R_{AA} well within errors.

Theoretical models: inputs

Statistical hadronization

Thermal model with T=164 MeV, μ = 1 MeV (from particle ratio fits).

All charm produced in the initial hard-scatterings.

Charmonium production at phase boundary.

Transport Model by Rapp & Zhao

Boltzman transport equation for the J/ψ .

 V_{FB} adjusted to measured $dN_{ch}/d\eta$.

 $\sigma_{c\bar{c}}|_{y=3.25} \approx 0.5 \text{ mb.}$

Shadowing: 30% suppression in the most central collisions.

No Croning effect and $\sigma_{Abs} = 0$.

10% of J/ ψ ← *B* and no quenching.

Transport Model by Liu et al.

Boltzman transport equation for the J/ψ .

 $\sigma_{c\bar{c}}|_{\gamma=3.25} \approx 0.38 \text{ mb}.$

EKS98 shadowing and $\sigma_{Abs} = 0$.

10% of J/ ψ ← *B* and R_{AA} (b) = 0.4 for all p_T range.

J/ψ photo-production

Clear deviation, at low $p_{\rm T}$ for semi and peripheral collisions, to the expected J/ ψ hadroproduction.

 J/ψ photo-production could be responsible of this excess.

More than 50% of the J/ ψ from photo-production have a $p_{\rm T}$ in the 0-200 MeV/c range.

Only ~ 1% of the J/ ψ from hadro-production have a p_T < 200 MeV.

$J/\psi < p_T^2 >$

