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introduction

• Short report on status of JHU generator 
for spin/CP measurements

• Relationship to MELA [Matrix Element 
Likelihood Analysis]
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generator basics
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• A MC program developed to simulate production and decay 
of X with spin-zero, -one, or -two in X→VV

• Includes all spin correlations and all possible couplings 

• Inputs are general dimensionless couplings - calculates matrix 
elements

• Both gg and qq production 

• Output in LHE format; e.g. can interface to Pythia for 
hadronization ^^

• Available with CTEQ and MSTW PDF sets

• All code publicly available: www.pha.jhu.edu/spin

• List of final states for spin-0,1,2 

• X→ZZ,WW,γγ

• Z → ll,νν,ττ,qq

• W → lν,τν,qq

• on-shell and off-shell modes included

• Latest updates soon publicly available

_

^^ Has already been done 
on CMS for some centrally 
produced samples

http://www.pha.jhu.edu/spin
http://www.pha.jhu.edu/spin


inputs and structures

• Inputs are dimensionless couplings for Lorentz-
invariant structures for helicity analysis

• Couplings can be re-written in another convention
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Where Does Higgs Kinematics Come From

• Discovery of SM Higgs (JP = 0+): H → γγ, ZZ(∗), W+W−,..

• Predict kinematics for SM Higgs and Beyond

– very different for background: qq̄ → ZZ and gg → ZZ

– very different for other signals 0− (non-SM Higgs), 2+ (graviton),..

A(HJ=0 → V1V2) = v−1ε∗µ1 ε∗ν2

(

a1gµνM
2
X + a2 qµqν + a3εµναβ qα

1 qβ
2

)

SM H → ZZ(∗), W+W− tree-level: a1 $= 0

SM H ↔ γγ, gg, (Zγ) loop-induced: a1 = −a2/2 $= 0

Beyond SM: any spin and couplings, e.g. a3 $= 0 for JP = 0−

Andrei Gritsan, JHU III March 19, 2012
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missing energy are included. We plan to perform detailed studies of these, more complicated final states, in the future.
However, we note that many results in this paper are applicable to these final states as well.
The remainder of the paper is organized as follows. In Section II, we describe the parameterization of production

and decay amplitudes that is employed in our analyses. In Section III, we calculate helicity amplitudes for the decay of
a resonance into a pair of gauge bosons or into a fermion-antifermion pair; helicity amplitudes for resonance production
are obtained by crossing. In Section IV, angular distributions for pp → X → ZZ → f1f̄1f2f̄2 for resonances with
spins zero, one, and two are presented. This is followed by detailed Monte Carlo simulation which includes all spin
correlations and main experimental effects and which is shown in Section V. Analysis using the multivariate maximum
likelihood technique is applied to several key scenarios to illustrate separation power of different helicity amplitudes
for all spin hypotheses and in both production and decay, as discussed in Section VI. For completeness, angular
distributions, including distributions for other decay channels, are given in the appendix.

II. INTERACTIONS OF AN EXOTIC PARTICLE WITH STANDARD MODEL FIELDS

In this section, the interaction of a color- and charge-neutral exotic particle X with two spin-one bosons V (such
as gluons, photons, Z, or W bosons) or a fermion-antifermion pair (such as leptons or quarks) is summarized. The
spin of X can be zero, one, or two. We construct the most general amplitudes consistent with Lorentz invariance and
Bose-symmetry, as well as gauge-invariance with respect to unbroken subgroups of SU(3) × SU(2)L × U(1)R of the
SM.
The four-momentum of the particle X is denoted by q and the four-momenta of the gauge bosons or fermions

by q1,2. The polarization vectors of gauge bosons are denoted by ε1,2; we assume them to be transverse qiεi = 0.
Fermion wave functions are conventional Dirac spinors. We employ the field strength tensor of a gauge boson with

momentum qi and polarization vector εi as f (i),µν = εµi q
ν
i − ενi q

µ
i , and the conjugate field strength tensor as f̃ (i)

µν =

1/2 εµναβf (i),αβ = εµναβεαi q
β
i . We use q̃ = q1 − q2 to denote the particular combination of the momenta of the two

final state particles.

A. Spin-zero X and two gauge bosons

The invariant amplitude that describes the interaction between a spin-zero particle X of arbitrary parity and two
spin-one gauge bosons reads

A(X → V V ) = v−1

(

g(0)
1

m2
V
ε∗1ε

∗
2 + g(0)

2
f∗(1)
µν f∗(2),µν + g(0)

3
f∗(1),µνf∗(2)

µα
qνqα

Λ2
+ g(0)

4
f∗(1)
µν f̃∗(2),µν

)

. (1)

In Eq. (1), f∗ denotes the complex conjugate field strength tensor, v is the SM vacuum expectation value of the Higgs

field, and Λ is the mass scale associated with BSM physics. The “couplings” g(0)1,..,4 are invariant form-factors; the

upper index reflects the X spin. Since we consider on-shell decays of the particle X to two on-shell gauge-bosons, g(i)j
can be thought of as effective dimensionless coupling constants which can, in general, be complex.
We note that, as written, Eq. (1) does not use the minimal set of independent variables since it uses both, the

field strength tensors and polarization vectors for gauge bosons in the final state. However, we write Eq. (1) in that
particular way because it can be applied to X decays into both massive and massless gauge bosons and because it
has the simplest possible connection to SM couplings at tree level. Indeed, if we identify X with the Higgs boson of

the SM, the proper tree-level amplitude for H → ZZ is obtained by setting g(0)j>1
= 0 and g(0)1 = 2i. To describe the

coupling of the spin-zero particle to massless gauge bosons (gluons or photons), we simply set2 mV = 0 in Eq. (1).

Clearly, the coefficients g(0),ggj for interaction with gluons, for example, do not need to be equal to the coefficients for

interaction with the Z bosons g(0),ZZ

j or the photons g(0),γγj . In fact, Eq. (1) is sufficiently general to accommodate all
radiative corrections to Higgs interactions with gauge bosons, massive or massless, in the SM, including CP -violating
form factors that appear at the three loop level [6].
In spite of the fact that there are four form-factors required to describe the interaction of the spin-zero boson with

two massive or massless spin-one bosons, there are only three independent structures in the scattering amplitude. To

2 For X coupling to two gluons, a trivial color factor needs to be introduced in Eq. (1).
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see this, we rewrite Eq. (1) through polarization vectors

A(X → V V ) = v−1ε∗µ1 ε∗ν2

(

a1gµνm
2
X
+ a2 qµqν + a3εµναβ q

α
1 q

β
2

)

, (2)

and find the coefficients a1,2,3 to be

a1 = g(0)
1

m2
V

m2
X

+ g(0)
2

2s

m2
X

+ g(0)
3

κ
s

m2
X

, a2 = −2g(0)
2

− g(0)
3

κ , a3 = −2g(0)
4

. (3)

We have defined the parameters s = q1q2 = (m2
X
− 2m2

V
)/2 and κ = s/Λ2. The amplitude for X decay into two

massless gauge bosons is obtained from Eqs. (2) and (3) by setting mV to zero.

B. Spin-one X and two gauge bosons

We consider the case when the exotic particle X has spin one and arbitrary parity. As a consequence of the Landau-
Yang theorem, the spin-one particle X cannot interact with two massless identical gauge bosons. For this reason,
a spin-one color-singlet particle cannot be produced in gluon fusion, or decay to two photons. The phenomenology
of spin-one decays into two Z bosons was recently discussed in Ref. [9]. Following that reference, we consider the
amplitude for the decay to two identical massive gauge bosons X → ZZ. This amplitude depends on two independent
form factors

A(X → ZZ) = g(1)
1

[(ε∗1q)(ε
∗
2εX) + (ε∗2q)(ε

∗
1εX)] + g(1)

2
εαµνβε

α
Xε∗,µ1 ε∗,ν2 q̃β . (4)

Similar to the spin-zero case, g(1)1 and g(1)2 are dimensionless effective coupling constants. We note that these coupling
constants are, in general, complex with absorptive parts that may arise from quantum loop effects. This possibility
was not considered in Ref. [9] where the case of zero complex phase difference between the two coupling constants
was studied. In the case when X has positive parity (JP = 1+), the first term violates and the second term conserves
parity. Alternatively, the two terms correspond to parity-conserving and parity-violating interactions of the 1−

particle, respectively.

C. Spin-two X and two gauge bosons

We turn to the spin-two case and construct the most general amplitude for the decay of a spin-two particle X into
two identical vector gauge bosons. The X wave function is given by a symmetric traceless tensor tµν , transverse to its
momentum tµνqν = 0. Since we would like to apply the formula for the amplitude to describe interactions of X with
massive and massless gauge bosons, we consider the possible dependence of the amplitude on both the field strength
tensor and the polarization vectors

A(X → V V ) = Λ−1
[

2g(2)
1

tµνf
∗1,µαf∗2,να + 2g(2)

2
tµν

qαqβ
Λ2

f∗1,µαf∗2,ν,β

+g(2)
3

q̃β q̃α

Λ2
tβν(f

∗1,µνf∗2
µα + f∗2,µνf∗1

µα) + g(2)
4

q̃ν q̃µ

Λ2
tµνf

∗1,αβf∗(2)
αβ

+m2
V

(

2g(2)
5

tµνε
∗µ
1 ε∗ν2 + 2g(2)

6

q̃µqα
Λ2

tµν (ε
∗ν
1 ε∗α2 − ε∗α1 ε∗ν2 ) + g(2)

7

q̃µq̃ν

Λ2
tµνε

∗
1ε

∗
2

)

+g(2)
8

q̃µq̃ν
Λ2

tµνf
∗1,αβ f̃∗(2)

αβ + g(2)
9

tµαq̃
αεµνρσε

∗ν
1 ε∗ρ2 qσ +

g(2)10 tµαq̃α

Λ2
εµνρσq

ρq̃σ (ε∗ν1 (qε∗2) + ε∗ν2 (qε∗1))

]

. (5)

As in the spin-zero and spin-one cases, g(2)1,..,10 are dimensionless effective coupling constants which are, in general,

complex numbers. They are different for different gauge bosons V . The first seven constants g(2)1,..,7 correspond to the

JP = 2+ particle parity-conserving interaction, while the last three terms with g(2)8,9,10 correspond to its parity-violating
interaction. Alternatively, they correspond to parity-violating and parity-conserving interactions of the 2− particle,
respectively.

Example: X(J=0) → VV, inputs are a1, a2, a3 
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see this, we rewrite Eq. (1) through polarization vectors
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a1gµνm
2
X
+ a2 qµqν + a3εµναβ q

α
1 q

β
2

)

, (2)

and find the coefficients a1,2,3 to be

a1 = g(0)
1

m2
V

m2
X

+ g(0)
2

2s

m2
X

+ g(0)
3

κ
s

m2
X

, a2 = −2g(0)
2

− g(0)
3

κ , a3 = −2g(0)
4

. (3)
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A(X → V V ) = Λ−1
[

2g(2)
1

tµνf
∗1,µαf∗2,να + 2g(2)

2
tµν

qαqβ
Λ2

f∗1,µαf∗2,ν,β

+g(2)
3

q̃β q̃α

Λ2
tβν(f

∗1,µνf∗2
µα + f∗2,µνf∗1

µα) + g(2)
4

q̃ν q̃µ

Λ2
tµνf

∗1,αβf∗(2)
αβ

+m2
V

(

2g(2)
5

tµνε
∗µ
1 ε∗ν2 + 2g(2)

6

q̃µqα
Λ2

tµν (ε
∗ν
1 ε∗α2 − ε∗α1 ε∗ν2 ) + g(2)

7

q̃µq̃ν

Λ2
tµνε

∗
1ε

∗
2

)

+g(2)
8

q̃µq̃ν
Λ2

tµνf
∗1,αβ f̃∗(2)

αβ + g(2)
9

tµαq̃
αεµνρσε

∗ν
1 ε∗ρ2 qσ +

g(2)10 tµαq̃α

Λ2
εµνρσq

ρq̃σ (ε∗ν1 (qε∗2) + ε∗ν2 (qε∗1))

]

. (5)
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J=1
5

We can now write the amplitude through polarization vectors

A(X → ZZ) = Λ−1e∗µ1 e∗ν2

[

c1 (q1q2)tµν + c2 gµνtαβ q̃
αq̃β + c3

q2µq1ν
m2

X

tαβ q̃
αq̃β + 2c4 (q1νq

α
2 tµα

+q2µq
α
1 tνα) + c5tαβ

q̃αq̃β

m2
X

εµνρσq
ρ
1q

σ
2 + c6t

αβ q̃βεµναρq
ρ +

c7tαβ q̃β
m2

X

(εαµρσq
ρq̃σqν + εανρσq

ρq̃σqµ)

]

. (6)

The coefficients c1−7 can be expressed through g(2)1,..,10

c1 = 2g(2)
1

+ 2g(2)
2

κ

(

1 +
m2

V

s

)2

+ 2g(2)
5

m2
V

s
,

c2 = −g(2)1

2
+ g(2)

3
κ

(

1− m2
V

s

)

+ 2g(2)
4

κ+ g(2)
7

κ
m2

V

s
,

c3 = −
(

g(2)2

2
+ g(2)

3
+ 2g(2)

4

)

κ
m2

X

s
,

c4 = −g(2)
1

− g(2)
2

κ− (g(2)
2

+ g(2)
3

+ g(2)
6

)κ
m2

V

s
,

c5 = 2g(2)
8

κ
m2

X

s
, c6 = g(2)

9
, c7 = g(2)

10
κ
m2

X

s
. (7)

To describe production of the particle X in hadron collisions, we need to know the X ’s coupling to gluons. The cor-
responding amplitude can be obtained from the case A(X → V V ) that we just considered by crossing transformation

and setting mV = 0, g(2)9 = 0. Also, because e1q2 = e2q1 = 0 in the massless case, we find that terms proportional to
c3 and c4 do not contribute when an analog of Eq. (6) is written for massless gauge bosons.

D. X and two fermions

For completeness, we also give here the general couplings of the particle X to two fermions. We denote fermion
masses as mq. We assume that the chiral symmetry is exact in the limit when fermion masses vanish. We obtain the
following amplitudes

A(XJ=0 → qq̄) =
mq

v
ūq1

(

ρ(0)
1

+ ρ(0)
2

γ5
)

vq2 , (8)

A(XJ=1 → qq̄) = εµūq1

(

γµ
(

ρ(1)
1

+ ρ(1)
2

γ5
)

+
mq q̃µ
Λ2

(

ρ(1)
3

+ ρ(1)
4

γ5
)

)

vq2 , (9)

A(XJ=2 → qq̄) =
1

Λ
tµν ūq1

(

γµq̃ν
(

ρ(2)
1

+ ρ(2)
2

γ5
)

+
mq q̃µq̃ν

Λ2

(

ρ(2)
3

+ ρ(2)
4

γ5
)

)

vq2 , (10)

where mq is the fermion mass and ū and v are the Dirac spinors. It follows that, in the case when fermions are
massless, the minimal couplings are also the most general ones and no new structures appear.

III. HELICITY AMPLITUDES

We are now in position to compute helicity amplitudes for the production and decay processes. Helicity amplitudes
are important because, as we will see in the following discussion, those amplitudes parameterize angular distributions
and, hence, can be directly extracted from data. By knowing how these amplitudes are expressed through effective
couplings introduced in the previous section, we can constrain those couplings through measurements of angular
distributions.
To compute the helicity amplitudes Aλ1λ2

for the decayX → V V , we calculate amplitudes presented in the previous
section for polarization vectors that correspond to λ1,λ2. We begin with the description of the polarization vectors
that we use in the analysis. Consider the decay X → V V in the rest frame of X . The momenta of the two V ’s are
parameterized as q1,2 = (mX/2, 0, 0,±βmX/2), where β = (1− 4m2

V
/m2

X
)1/2 is the velocity of gauge bosons in the X

rest frame. The polarization vectors for the two Z-bosons read

eµ1,2(0) = m−1
V

(±βmX/2, 0, 0,mX/2) , eµ1 (±) = eµ2 (∓) =
1√
2
(0,∓1,−i, 0). (11)

J=2
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• Analytic expression contains both off-shell Z masses

• Compare signal model to signal simulation 

1

I. H ! Z(⇤)Z(⇤) ! 4l

The helicity amplitudes A�1�2 are good experimental observables in the case of the narrow-mass approximation.
This is a good approximation for a narrow resonance X with a mass above the ZZ mass threshold. However, below
the ZZ threshold, these amlitudes depend on the actual mass of the two daughters in the decay X ! ZZ. In the
example of the spin-zero X particle, it coupling to two Z bosons is generally described as

A(X ! V V ) = v�1✏⇤µ1 ✏⇤⌫2

⇣
a1gµ⌫m

2
X + a2 qµq⌫ + a3✏µ⌫↵� q

↵
1 q

�
2

⌘
, (1)

with the three coupling constants a1, a2, and a3 which are dimensionless and complex. The helicity amplitudes are
calculated as follows

A00 = �m2
X

v

�
a1�+ a2⌘(�

2 � 1)
�
, (2)

A±± =
m2

X

v

 
a1 ±

ia3⌘
p

�2 � 1

2

!
, (3)

where the parameters � and ⌘ depend on the masses of the particles, and in particular on the masses m1 and m2 of
the o↵-shell Zs.

� = (m2
X �m2

1 �m2
2)/(2m1m2)

⌘ = m1m2/m
2
X , (4)

The angular distribution would still be described by Eq. (??), but the values of f�1�2 are no longer good quantities
to fit for since they are not constant. Instead, f�1�2 should be substituted by |A�1�2 |2 expressed through coupling
constants and masses using Eq. (2). Therefore, the 5D angular distrubution becomes 7D mass-anagular distribution
where dependence on m1 and m2 enters in a correlated way.

We define the dimensionless coupling constants ai = a1, a2, a3 as ai = |ai|ei�i . We can see the dependence of the
angular distribution on the o↵-shell boson mass m⇤ through ⌘,� by writing down the free parameters:

|A00|2 =
M4

X

v2

⇢
|a1|2�2 + |a2|2⌘2(�2 � 1)2 + 2|a1||a2|�(�2 � 1)⌘ cos(�1 � �2)

�

|A±±|2 =
M4

X

v2

⇢
|a1|2 + |a3|2⌘2(�2 � 1)± 2|a1||a3|�⌘

p
�2 � 1 cos(�1 � �3)

�

�00 = arctan 2


|a1|� cos�1 + |a2|⌘(�2 � 1) cos�2, |a1|� sin�1 + |a2|⌘(�2 � 1) sin�2

�

�±± = arctan 2


|a1| cos�1 ⌥ |a3|⌘

p
�2 � 1 cos�3, |a1| sin�1 ± |a3|⌘

p
�2 � 1 sin�3

�
(5)

To write down the fully di↵erential mass-angle expression, we must add in the Z⇤ propagator terms, as in Eq. (23)
of Ref. [? ].

d�J=0

� dm1dm2d cos ✓1d cos ✓2d�
/ � ⇥ m3

1

(m2
1 �M2

Z)
2 +M2

Z�
2
Z

m3
2

(m2
2 �M2

Z)
2 +M2

Z�
2
Z

⇥


d�J=0

� d cos ✓1d cos ✓2d�
(m1,m2, cos ✓1, cos ✓2,�)

�
(6)

where we have defined:

�2 =


1� (m1 +m2)

2

m2
X

�
1� (m1 �m2)

2

m2
X

�
(7)

Now we can take Eq. 6 and try to extract the mass distributions. We do this by integrating out the angular
dependency of the di↵erential cross-section leaving just d�/dm1dm2 in Mathematica for the SM Higgs case. The
remaining 2D distribution is plotted in Fig. 1

We can now implement both the SM Higgs and the Pseudoscalar Higgs 2D o↵-shell distributions in RooFit to
compare with generator level simulation. First we consider the case where we do not require that m1 > m2 (the
symmetric case). In this case, the m1 and m2 distributions are expected to be the same. This is shown for the SM
Higgs case in Fig. 2.

Now we consider the more common case where m1 is constrained to be greater than m2 (the asymmetric case).
This is plotted in Fig. 3 for both the SM and Pseudoscalar Higgs cases.



validation: spin-2
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Φθ1 θ2

WW

ZZ

More validation, various spin-2 hypotheses
JP = 2+ (minimal), 2+ (longitudinal), 2-

Example: Good agreement for both ZZ and WW modes



MELA

• Program based on helicity amplitude formalism to 
characterize resonances

• Improved separation of signal and background for 
improved sensitivity

• Hypothesis separation for a newly discovered resonance

• Direct measurement of couplings 

• Comprehensive introduction can be found here

• The latest: current efforts in implementing MELA 
analysis into CMS RooStats-based framework
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JHU+Pythia interface

• Powheg currently used for ggH production

• A comparison of Powheg+Pythia and JHU+Pythia 
samples in 2l2q final state with mH (JP = 0+) = 300 GeV

• Tests both lepton and hadronic Z 

• GEN level comparisons, inside detector acceptance with 
analysis-like cuts
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pT distribution comparison: 

Pythia does a reasonable job of 
reproducing NLO pT distribution

Current prescription is to reweight 
Powheg based on HqT anyway.  
Can do the same for JHUGen 



more Powheg vs JHU
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Generally good agreement between 
JHU+Pythia and Powheg+Pythia

Residual differences in kinematic 
distributions at ~few % level coming 

for PDFs and NLO treatment

cosθ* cosθ1

cosθ2



generator options - discussion

• Consider various options for generator for spin/CP studies

• use JHUGen

• analytically re-weight Powheg samples

• numerically re-weight Powheg samples 

• extend JHUGen

• Option: use JHUGen

• simplest option, just generate LHE files and interface with 
Pythia and detector simulation

• generate a sample per hypothesis, require statistically 
independent samples anyway
• at the point of discovery, we are working in a narrow mass range, 

would be a manageable amount of samples

• good agreement w.r.t. Powheg+Pythia, both Powheg and 
JHUGen would require reweight with HqT
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generator options - discussion

• Option: re-weight Powheg samples

• practically, assign a weight for each event for each signal 
hypothesis w.r.t. the SM Higgs

• analytically: use the ideal angular distributions to find weights for 
different hypotheses, advantage is very fast

• requires some work on the phenomenological side

• numerically: use JHUGen ME calculation to create event-by-event 
weights

• weight = ME (hypothesis X) / ME (SM Higgs)

• technically is a bit awkward and requires some work to create such an 
interface

• no statistically independent samples for proper statistical treatment

• Option: extend JHUGen

• when we enter the systematically dominated regime, could extend 
JHUGen to NLO using same formalism
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backup
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