

StorageD
A “customisable workflow”

Kevin O’Neill and Roger Downing

STFC eScience

StorageD

• Originated to take experimental data from

Diamond central storage to the tape store

interface
– Component of the STFC eScience framework for facilities

– In production in Diamond since 2009

– Integrates with other components used by Diamond such as

ICAT

– Archived over 155Tb (>36.7m files) of experimental data in v1

– V1 developed and proved the overall workflow

– V2 stored 262Tb in ~113m files since July 2011

– Deployed in CEDA (currently >366Tb in >9.5m files)

StorageD provides…

• A pipeline from the user’s data area to the end data
resource (CASTOR) with:
– Validation of data files – checks that files:

• have correct permissions and filename syntax;

• are available

• have not already been archived

– Packaging of data files into “retrieval-friendly” aggregations
(with checksums)

• Aggregation mechanism takes into account expected method of
retrieval.

– Back-end store transparency to the end user:
• SRB/ADS (old)

• CASTOR (current)

• Mounted file systems

– Monitoring of the data movement process
• Error reporting, customised to requirements

• Real time web-based monitoring

Design criteria

• Transport and store large-volumes of data

according to a defined, rarely changing,

workflow

• Efficient

• Maintainable

• Easily adaptable and extensible

• Progress of files through the system is fully:

– Verified

– Tracked

– Auditable

StorageD performance and

scaling
• We’ve found…

– Two axes affecting performance:

• Registration and package definition:

– can handle well over 1m files per hour, dependent on

factors such as the file system

• Creation and movement of packages to end

storage (aka volume)

– ability to allow as many registration and transfer

processes as required means that bottle neck lies in

client file system, network and ability of storage

resource interface to accept input

Aggregations

 (aka transfers, containers…)

• Bring together files into units for:

– Transfer across the network

– Storage in tape system

• Default method is concatenation

– But “tarring” tested and others possible

• Currently, only one aggregation method

per installation

• Assembled according to “rules”

Aggregation rules

• Files allocated by rule

– Files from a beamline/visit (DLS) or

dataset/management unit (CEDA) allocated to an

open aggregation, if none then create one and

populate

• Closure by rule

– Currently set per beamline

– Simple closure parameters held in DB table

• Max size (usually ~5GB for DLS, ~10GB for CEDA)

• Max number of files

• Max time no activity (30 mins norm for DLS) trumps all

General architecture

Database provides:

Process control

File/aggregation information

Allocation of files to aggregation

Auditing of process

Python code provides:

Interface to file store(s)

Input file validation

Aggregation instantiation

Aggregation transfer to

storage resource

DB Interface

• Input via bulk ingest utility

– SQL*Loader for Oracle

• Series of stored procedures called by

code to perform defined task

 add_batch_log

add_error

get_aggrgtin_dtls_by_trnsfr_id

get_file_list_by_transfer_id

get_file_details_by_file_name

get_transfer_id_next_flushable

get_transfer_id_next_syncable

get_transfer_id_next_trnsfrble

set_transfer_end_copy

set_transfer_end_sync

set_transfer_end_flush

set_transfer_error_copy

set_transfer_error_flush

set_transfer_error_retrieve

set_transfer_error_sync

set_transfer_start_retrieval

set_transfer_end_retrieval

set_trnsfr_md5sum_by_trnsfr_id

“User Interface(s)”

• Basically a file list:
– Tell us where to get the files to store, and

we’ll get them (“terms & conditions apply”)

– For Diamond, location extracted from ICAT

XML file

– For CEDA, an enhanced file list will be

used, but currently just a simple list

• However, custom registration clients

written against the APIs are possible

State-driven transfers…

• Each transition logged
– CREATION Initial state when first file about to be assigned to it

– BUILDING Accepting files

– CLOSING Transfer is about to close, but needs closure procedures running on it

– CLOSED Transfer is closed to new input

– TRANSFERABLE Aggregation closed and ready for actual transfer

– COPYING Copy to StorageD disk cache in progress

– CACHED Copy to StorageD disk cache completed

– CACHED_SYNCED Aggregation stored on disk and storage resource (CASTOR)

– FLUSHING Copy of aggregation being removed from StorageD cache

– SYNCED Aggregation stored on CASTOR

– DELETED Aggregation deleted for some reason.

 See history and error table

• And accompanying error states

• Where necessary, states require that an aggregation is “owned” by a

process/server

All logged in “loving detail”

Getting it back…
• Two main ways

– Custom interface talking to retrieval APIs

– A line mode command (sd_get) which can take a file

list or a “high level aggregation”, such as a visit ID.

• Retrieval request created that then:

– DB “finds” the necessary aggregations to be retrieved,

“locking” any already on cache

– Code recalls aggregations to cache (if necessary)

– desired files extracted and delivers to the client as they

are available

– State of all elements in tracked throughout the process

Futures…

• So many possible…

– Improved consistency checking,, such as file level

checksumming

– Improved cache communication

– More flexible “aggregation ownership” in the

workflow

– More complex “aggregation rule” processing

– Cover a wider range of scenarios for multiple

servers and clients

– Wide Area StorageD

– Etc, etc…

Thank you…

For more details, contact:

Roger Downing

(roger.downing@stfc.ac.uk)

Kevin O’Neill (kevin.o’neill@stfc.ac.uk)

mailto:roger.downing@stfc.ac.uk

