

2012 CERN-ECFA-NuPECC Workshop on the LHeC Chavannes-de-Bogis, June 14th 2012

LHeC - Low x Kinematics

for the LHeC Study group, http://cern.ch/lhec

Contents:

I. CDR, Chapter 4: Physics at High Parton Densities.

- 2. Highlights:
 - 'Benchmarking' for pp/pA/AA: PDFs at small x.
 - 'Discovery': novel regime of QCD at small x?
 - Transverse scan of the hadron at small x.
 - Dynamics of QCD radiation and hadronization.
- 3. Summary and outlook.

CDR, arXiv:1206.2913, submitted to JPG

CDR, Chapter 4:

- 81 pages (JPG format).
- 34 authors (thanks!!!).
- 4 conveners.

Néstor Armesto (University of Santiago de Compostela) Brian A. Cole (Columbia University, New York) Paul R. Newman (University of Birmingham) Anna M. Stasto (Pennsylvania State University)

• 3(+2) referees.

Michele Arneodo (INFN, Torino) Alfred Mueller (Columbia University, New York) Raju Venugopalan (BNL, Brookhaven) J.L.Abelleira Fernandez 16,23 , C.Adolphsen 57 , A.N.Akay
 03 , H.Aksakal 39 , J.L.Albacete
 52 , S.Alekhin 17,5 P.Allport
 24 , V.Andreev 34 , R.B.Appleby
 14,30 , E.Arikan 39 , N.Armesto
 53,a , G.Azuelos 33,64 , $\mathrm{M.Bai}^{37}, \mathrm{D.Barber}^{14,17,24}, \mathrm{J.Bartels}^{18}, \mathrm{O.Behnke}^{17}, \mathrm{J.Behr}^{17}, \mathrm{A.S.Belyaev}^{15,56}, \mathrm{I.Ben-Zvi}^{37}$ N.Bernard²⁵, S.Bertolucci¹⁶, S.Bettoni¹⁶, S.Biswal⁴¹, J.Blümlein¹⁷, H.Böttcher¹⁷, A.Bogacz³⁰ C.Bracco¹⁶, G.Brandt⁴⁴, H.Braun⁶⁵, S.Brodsky^{57,6}, O.Brüning¹⁶, E.Bulyak¹², A.Buniatyan¹⁷ H.Burkhardt¹⁶, I.T.Cakir⁰², O.Cakir⁰¹, R.Calaga¹⁶, V.Cetinkaya⁰¹, E.Ciapala¹⁶, R.Ciftci⁰¹ A.K.Ciftci⁰¹, B.A.Cole³⁸, J.C.Collins⁴⁸, O.Dadoum⁴², J.Dainton²⁴, A.De.Roeck¹⁶, D.d'Enterria¹⁶ A.Dudarev¹⁶, A.Eide⁶⁰, R.Enberg⁶³, E.Eroglu⁶², K.J.Eskola²¹, L.Favart⁰⁸, M.Fitterer¹⁶, S.Forte³², A.Gaddi¹⁶, P.Gambino⁵⁹, H.García Morales¹⁶, T.Gehrmann⁶⁹, P.Gladkikh¹², C.Glasman²⁸ R.Godbole³⁵, B.Goddard¹⁶, T.Greenshaw²⁴, A.Guffanti¹³, V.Guzey^{19,36}, C.Gwenlan⁴⁴, T.Han⁵⁰, Y.Hao³⁷, F.Haug¹⁶, W.Herr¹⁶, A.Hervé²⁷, B.J.Holzer¹⁶, M.Ishitsuka⁵⁸, M.Jacquet⁴², B.Jeanneret¹⁶, J.M.Jimenez¹⁶, J.M.Jowett¹⁶, H.Jung¹⁷, H.Karadeniz⁰², D.Kayran³⁷, A.Kilic⁶², K.Kimura⁵⁸, M.Klein²⁴, U.Klein²⁴, T.Kluge²⁴, F.Kocak⁶², M.Korostelev²⁴, A.Kosmicki¹⁶, P.Kostka¹⁷ $H.Kowalski^{17},G.Kramer^{18},D.Kuchler^{16},M.Kuze^{58},T.Lappi^{21,c},P.Laycock^{24},E.Levichev^{40},\\$ S.Levonian¹⁷, V.N.Litvinenko³⁷, A.Lombardi¹⁶, J.Maeda⁵⁸, C.Marquet¹⁶, B.Mellado²⁷, K.H.Mess¹⁶ A.Milanesa¹⁶, S.Moch¹⁷, I.I.Morozov⁴⁰, Y.Muttoni¹⁶, S.Myers¹⁶, S.Nandi⁵⁵, Z.Nergiz³⁹, P.R.Newman⁰⁶, T.Omori⁶¹, J.Osborne¹⁶, E.Paoloni⁴⁹, Y.Papaphilippou¹⁶, C.Pascaud⁴², H.Paukkunen⁵³, E.Perez¹⁶, T.Pieloni²³, E.Pilicer⁶², B.Pire⁴⁵, R.Placakyte¹⁷, A.Polini⁰⁷ V.Ptitsyn³⁷, Y.Pupkov⁴⁰, V.Radescu¹⁷, S.Raychaudhuri³⁵, L.Rinolfi¹⁶, R.Rohini³⁵, J.Rojo^{16,31} S.Russenschuck¹⁶, M.Sahin⁰³, C.A.Salgado^{53,a}, K.Sampei⁵⁸, R.Sassot⁰⁹, E.Sauvan⁰⁴, U.Schneekloth¹⁷ T.Schörner-Sadenius¹⁷, D.Schulte¹⁶, A.Senol²², A.Servi⁴⁴, P.Sievers¹⁶, A.N.Skrinsky⁴⁰, W.Smith²⁷, H.Spiesberger²⁹, A.M.Stasto^{48,d}, M.Strikman⁴⁸, M.Sullivan⁵⁷, S.Sultansoy^{03,e}, Y.P.Sun⁵⁷ B.Surrow¹¹, L.Szymanowski^{66,f}, P.Taels⁰⁵, I.Tapan⁶², T.Tasci²², E.Tassi¹⁰, H.Ten.Kate¹⁶ J.Terron²⁸, H.Thiesen¹⁶, L.Thompson^{14,30}, K.Tokushuku⁶¹, R.Tomás García¹⁶, D.Tommasini¹⁶ D.Trbojevic³⁷, N.Tsoupas³⁷, J.Tuckmantel¹⁶, S.Turkoz⁰¹, T.N.Trinh⁴⁷, K.Tywoniuk²⁶, G.Unel²⁰ J.Urakawa⁶¹, P.VanMechelen⁰⁵, A.Variola⁵², R.Veness¹⁶, A.Vivoli¹⁶, P.Vobly⁴⁰, J.Wagner⁶⁶ R. Wallny⁶⁸, S. Wallon^{43,46,f}, G. Watt¹⁶, C. Weiss³⁶, U.A. Wiedemann¹⁶, U. Wienands⁵⁷, F. Willeke³⁷ B.-W.Xiao⁴⁸, V.Yakimenko³⁷, A.F.Zarnecki⁶⁷, Z.Zhang⁴², F.Zimmermann¹⁶, R.Zlebcik⁵¹,

4	Phy	sics at	t High Parton Densities	102
	4.1 Physics at small x			102
		4.1.1	High energy and density regime of QCD	102
		4.1.2	Status following HERA data	110
		4.1.3	Low- x physics perspectives at the LHC	117
		4.1.4	Nuclear targets	120
	4.2 Prospects at the LHeC			125
		4.2.1	Strategy: decreasing x and increasing A	125
		4.2.2	Inclusive measurements	125
		4.2.3	Exclusive production	133
		4.2.4	Inclusive diffraction	153
		4.2.5	Jet and multi-jet observables, parton dynamics and fragmentation	167
		4.2.6	Implications for ultra-high energy neutrino interactions and detection	179

Chapter 4: physics

- Proton structure to a few
 10⁻²⁰ m: Q² lever arm.
- Precision QCD/EW physics.
- High-mass frontier (leptoquarks, excited fermions, contact interactions).
- Unambiguous access, in ep and eA, to a qualitatively novel regime of matter predicted by QCD.
- Substructure/parton dynamics inside nuclei with strong implications on QGP search.

Legacy from HERA:

- Structure functions in an extended x-Q² range, xg $\propto I/x^{\lambda}$, $\lambda > 0$.
- Large fraction of diffraction $\sigma_{diff}/\sigma_{tot} \sim 10\%$.
- But: no eA/eD, kinematical reach at small x, luminosity at high x / for searches (odderon,...), flavour decomposition, TMDs,...

Small x and saturation:

- QCD radiation of partons when x decreases leads to a large number of partons (gluons), provided each parton evolves independently (linearly, $\Delta[xg] \propto xg$).
- This independent evolution breaks at high densities (small x or high mass number A): non-linear effects ($g \leftrightarrow gg$, $\Delta[xg] \propto xg k(xg)^2$).

Small x and saturation:

• QCD radiation of partons when x decreases leads to a large number of partons (gluons), provided each parton evolves independently (linearly, $\Delta[xg] \propto xg$).

• This independent evolution breaks at high densities (small x or high mass number A): non-linear effects ($g \leftrightarrow gg$, $\Delta[xg] \propto xg - k(xg)^2$).

The 'QCD phase' diagram:

Origin in the early 80's: GLR, Mueller et al, McLerran-Venugopalan.

Our aims: understanding

- The implications of unitarity in a QFT.
- The behaviour of QCD at large energies.
- The hadron wave function at small x.
- The initial conditions for the creation of a dense medium in heavy-ion collisions.

The 'QCD phase' diagram:

Origin in the early 80's: GLR, Mueller et al, McLerran-Venugopalan.

• The Initial conditions for the creation of a dense medium in heavy-ion collisions.

Status of small-x physics:

- Three pQCD-based alternatives to describe small-x ep and eA data (differences at moderate $Q^2(>\Lambda^2_{QCD})$ and small x):
- → DGLAP evolution (fixed order PT).
- → Resummation schemes.
- → Saturation (CGC, dipole models).
- Non-linear effects (unitarity constraints) are density effects: where? \Rightarrow two-pronged approach at the LHeC: $\downarrow x / \uparrow A$.

LHC vs. LHeC:

• The LHeC will explore a region overlapping with the LHC but in a much cleaner manner.

LHC vs. LHeC:

• The LHeC will explore a region overlapping with the LHC but in a much cleaner manner.

LH Relevance for the HI program:

 Nuclear wave function at small x: nuclear structure functions.

- Particle production at the very beginning: which factorisation in eA?
- How does the system behave as ~ isotropised so fast?: initial conditions for plasma formation to be studied in eA.
- Probing the medium through energetic particles (jet quenching etc.): modification of QCD radiation and hadronization in the nuclear medium.

Contents:

I. CDR, Chapter 4: Physics at High Parton Densities.

2. Highlights:

- 'Benchmarking' for pp/pA/AA: PDFs at small x.
- 'Discovery': novel regime of QCD at small x?
- Transverse scan of the hadron at small x.
- Dynamics of QCD radiation and hadronization.
- 3. Summary and outlook.

CDR, arXiv:1206.2913, submitted to JPG

Proton PDFs at small x:

- Parton densities poorly known at small x and small to moderate Q² [talks by Laycock and Radescu]: uncertainties in predictions.
- LHeC will substantially reduce the uncertainties in global fits: F_L and heavy flavour decomposition most useful.

Physics at low x_{Bj} and in eA: 2. Highlights.

Proton PDFs at small x:

- Parton densities poorly known at small x and small to moderate Q² [talks by Laycock and Radescu]: uncertainties in predictions.
- LHeC will substantially reduce the uncertainties in global fits: F_L and heavy flavour decomposition most useful.

LHO Nuclear PDFs at small x (I):

Parton densities unconstrained at small x and small to moderate
 Q² [talk by Zurita] ⇒ uncertainties in the predictions for

observables within collinear factorisation: pPb@LHC.

Physics at low x_{Bj} and in eA: 2. Highlights.

LHO Nuclear PDFs at small x (I):

Parton densities unconstrained at small x and small to moderate
 Q² [talk by Zurita] ⇒ uncertainties in the predictions for

observables within collinear factorisation: pPb@LHC.

LHO Nuclear PDFs at small x (II):

 \bullet F₂ data substantially reduce the uncertainties in DGLAP analysis; inclusion of charm, beauty and F_L also produce improvements.

LHO Nuclear PDFs at small x (II):

• F_2 data substantially reduce the uncertainties in DGLAP analysis; inclusion of charm, beauty and F_L also produce improvements.

LHO Nuclear PDFs at small x (II):

 \bullet F₂ data substantially reduce the uncertainties in DGLAP analysis; inclusion of charm, beauty and F_L also produce improvements.

Effects beyond DGLAP?:

• LHeC F₂ and F_L data will have discriminatory power on models.

Effects beyond DGLAP?:

NLO DGLAP cannot simultaneously accommodate LHeC F_2 and F_L data if saturation effects included according to current models.

Diffraction:

- t conjugate
 to b:
 transverse
 scan of the
 hadron.
- Large
 increase in M²,
 x_P, β range.

Diffractive Kinematics at x_{IP}=0.01

Physics at low x_{Bj} and in eA: 2. Highlights.

Diffraction:

HeO Elastic VM production in ep:

LHO Elastic VM production in eA:

• For the coherent case, predictions available. \

 Challenging experimental problem.

DVCS:

- Exclusive processes give information about GPDs, whose Fourier transform gives a tranverse scan of the hadron: DVCS sensitive to the singlet.
- Sensitive to dynamics e.g. non-linear effects.

DVCS, E_e =50 GeV, 10° , $p_T^{Y,cut}$ =5 GeV, 100 fb^{-1}

Physics at low x_{Bi} and in eA: 2. Highlights.

Radiation and hadronization:

• LHeC: dynamics of QCD radiation and hadronization.

Most relevant for particle production off nuclei and for QGP

analysis in HIC.

Low energy: hadronization

inside \rightarrow formation time, (pre-)

hadronic absorption,...

• High energy: partonic evolution altered in the nuclear medium.

~ ratio of FFs A/p MSTW08L0, qhat=0MSTW08LO+EPS09, qhat=0 MSTW08L0+EPS09, qhat=0.72, L_{max} 0.5 MSTW08L0+EPS09, qhat=0.72, t_{form} ν (GeV)

 $R_A^h(z,\nu) = \frac{1}{N_A^e} \frac{\mathrm{d}N_A^h(z,\nu)}{\mathrm{d}\nu \,\mathrm{d}z} / \frac{1}{N_D^e} \frac{\mathrm{d}N_D^h(z,\nu)}{\mathrm{d}\nu \,\mathrm{d}z}$

Summary:

• At an LHeC@CERN:

- → Unprecedented access to small x in p and A for PDFs.
- → Novel sensitivity to physics beyond standard pQCD.
- → Stringent tests of QCD radiation and hadronization.
- → High precision tests of collinear factorization(s).
- → Transverse scan of the hadron at small x.
- **→** ...

• The LHeC will answer the question of saturation/ non-linear dynamics. For that, ep AND eA essential!!!

Outlook: pending issues

- → Monte Carlo model for inclusive, semi-inclusive, diffractive and exclusive processes in ep and eA (with nuclear breakup) [talk by Plaetzer]. Thanks to Anna,
 Max and Paul!!!
- → Separation of coherent diffraction off nuclei.
- → Radiative corrections [talk by Spiesberger].
- → More realistic estimates of measurables yields: effects of backgrounds on jets, asymmetries for the odderon,...
- → Detailed program for sensitivity to non-linear effects and for GPDs.
- → Constraints from pp/pA/AA at the LHC [talk by Salgado].

Possibilities of synergies with other projects.

LHeC

Changes and additions (I):

- Chapter moved before BSM, right after Precision QCD and EW.
- Introduction refined: resummation moved, now
 DGLAP → resummation → non-linear equations and saturation.
- GPD-related content enlarged [talk by Pire]:
- ◆ Theoretical introduction.
- ◆ Possibilities of measurement of helicity-flip GPDs through exclusive production

$$ep(p_2) \to e' \gamma_{L/T}^{(*)}(q) \ p(p_2) \to e' \rho_{L,T}^0(q_\rho) \ \rho_T(p_\rho) \ N'(p_{2'})$$

• Diffractive dijets included as a test of hard collinear factorisation [talk by Zlebcik].

LHeC

Changes and additions (I):

- Chapter moved before BSM, right after Precision QCD and EW.
- Introduction refined: resummation moved, now
 DGLAP → resummation → non-linear equations and saturation.
- GPD-related content enlarged [talk by Pire]:
- ◆ Theoretical introduction.
- ◆ Possibilities of measurement of helicity-flip GPDs through exclusive production

$$ep(p_2) \to e' \gamma_{L/T}^{(*)}(q) \ p(p_2) \to e' \rho_{L,T}^0(q_\rho) \ \rho_T(p_\rho) \ N'(p_{2'})$$

• Diffractive dijets included as a test of hard collinear factorisation [talk by Zlebcik].

Changes and additions (II):

0.08

0.04

0.00

2.6

2.8

3.0

3.2

3.4

3.6

- Predictions for searching the odderon in ep \rightarrow e $\pi^+\pi^-$ p.
- SIDIS: yields and nuclear effects considered.
- Dihadron azimuthal correlations studied as a possible signal of saturation.
- Section on nuclear diffraction rewritten and comments on the black disk limit added.

π^0 spectrum

 $5^{\circ} < \theta_{\pi} < 25^{\circ},$ $x_{\pi} = E_{\pi}/E_{p} > 0.0 I$

Dihadron azimuthal correlation

 $pT^{lead}>3 GeV$ $pT^{ass}>2 GeV$ $z_{lead}=z_{ass}=0.3$ y=0.7 $Q^2=4 GeV^2$

Backup:

Messages from HERA:

Very good description of $F_{2(c,b)}$ (F_{L} ?) within DGLAP, steep gluon in I/x.

Large fraction of diffraction $\sigma_{\text{diff}}/\sigma_{\text{tot}} \sim 10\%$ (Cooper-Sarkar,

1206.0984).

LHeC scenarios:

config	g.	E(e)	E(N)	\mathbf{N}	$\int L(e^+)$	$\int L(e^{-})$	Pol L	/10 ³² P/	MW	yea	rs type
For F ₂											
A		20	7	p	1	1	-	1	10	1	SPL
В		50	7	p	50	50	0.4	25	30	2	$RR hiQ^2$
C		50	7	p	1	1	0.4	1	30	1	RR lo x
D		100	7	p	5	10	0.9	2.5	40	2	LR
Е		150	7	p	3	6	0.9	1.8	40	2	LR
F		50	3.5	D	1	1		0.5	30	1	eD
G		50	2.7	Pb	10-4	10-4	0.4	10-3	30	1	ePb
Н		50	1	p		1		25	30	1	lowEp
		50	3.5	Ca	5 · 10-4		?	5·10	3 ?	?	eCa

• For F_L : 10, 25, 50 + 2750 (7000); $Q^2 \le sx$; Lumi=5, 10, 100 pb⁻¹ respectively; charm and beauty: same efficiencies in ep and eA.

LHeO Proton PDFs at small x (I):

• Parton densities poorly determined at small x and small to moderate Q^2 [talk by Radescu] \Rightarrow uncertainties in the predictions

for observables within collinear factorisation.

LHeC

Proton PDFs at small x (I):

• Parton densities poorly determined at small x and small to moderate Q^2 [talk by Radescu] \Rightarrow uncertainties in the predictions

for observables within collinear factorisation.

LHeC

Photoproduction cross section:

• Small angle electron detector 62 m far from the interaction point: Q²<0.01 GeV, $y\sim0.3 \Rightarrow W\sim0.5 \sqrt{s}$.

Substantial enlarging of the lever arm in W.

Implications for UHEv's:

 x_{eut}

- V-n/A cross section (T energy loss) dominated by DIS structure functions / (n)pdfs at small-x and large (small) Q².
- Key ingredient for estimating fluxes.

10-12

0.0

eA inclusive: comparison

• Good precision can be obtained for $F_{2(c,b)}$ and F_L at small x (Glauberized 3-5 flavor GBW model, NA '02).

Physics at low x_{Bj} and in eA.

ep diffractive pseudodata:

- Large increase in the M², x_P=(M²-t +Q²)/(W²+Q²), β=x/x_P region studied.
 - Possibility to combine LRG and LPS.

Physics at low x_{Bj} and in eA.

ep diffractive pseudodata:

• Large increase in the M^2 , $x_P = (M^2 - t + O^2)/(W^2 + O^2)$ $\beta = x/2$

Note: diffraction in ep is linked to shadowing in eA (Gribov): FGS, Capella-Kaidalov et al,...

LHO Diffraction and non-linear dynamics:

• Dipole models show differences with linear-based extrapolations (HERA-based dpdf's) and among each other: possibility to check saturation and its realization.

Diffractive dijets:

Diffractive DIS Q²>2 (100 fb⁻¹) 10⁵ 59 10⁵ 10³ p 10² 10⁻³ 10⁻³ 10⁻⁴ 10⁻⁵ 10⁻⁵

- Diffractive dijet and open heavy flavour production offer large possibilities for:
 - → Checking factorization in hard diffraction.
 - → Constraining DPDFs.
- Large yields upto large pT^{jet}.
- Direct and resolved contributions: photon PDFs.

LHO Diffractive DIS on nuclear targets:

- Challenging experimental problem, requires Monte Carlo simulation with detailed understanding of the nuclear break-up.
- For the coherent case, predictions available.

He Elastic VM production in ep:

Odderon:

• Odderon (C-odd exchange contributing to particle-antiparticle difference in cross section) seached in $\gamma^{(\star)}p \to Cp$, where $C = \pi^0, \eta, \eta', \eta_c \dots$ or through O-P interferences.

 Sizable charge asymmetry, yields and reconstruction pending.

Transverse scan: elastic VM

• t-differential measurements give a gluon tranverse mapping of the hadron/nucleus.

Transversity GPDs:

- Chiral-odd transversity
 GPDs are largely unknown.
- They can be accessed through double exclusive production:

$$ep(p_2) \to e' \gamma_{L/T}^{(*)}(q) \ p(p_2) \to e' \rho_{L,T}^0(q_\rho) \ \rho_T(p_\rho) \ N'(p_{2'}) \longrightarrow_{p}$$

LHeC

Dijet azimuthal decorrelation:

- Studying dijet azimuthal decorrelation or forward jets ($p_T \sim Q$) would allow to understand the mechanism of radiation:
- → k_T-ordered: DGLAP.
- → k_T-disordered: BFKL.
- → Saturation?
- Further imposing a rapidity gap (diffractive jets) would be most interesting: perturbatively controllable observable.

Dynamics of QCD radiation:

- Studying dijet azimuthal decorrelation or forward jets (p_T~Q) would allow to understand the mechanism of radiation:
- → k_T-ordered: DGLAP.

LHO Dihadron azimuthal decorrelation:

- Dihadron azimuthal decorrelation is currently discussed at RHIC as one of the most suggestive indications of saturation.
- At the LHeC it could be studied far from the kinematical limits.

In-medium hadronization (I):

- The LHeC (V_{max}~ I0⁵ GeV) would allow to study the dynamics of hadronization, testing the parton/hadron eloss mechanism by introducing a length of colored material which would modify its pattern (length/nuclear size, chemical composition).
- Low energy: need of hadronization inside → formation time, (pre-) hadronic absorption,...

Brooks at Divonne'09

 High energy: partonic evolution altered in the nuclear medium, partonic energy loss.

In-medium hadronization (II):

- Large (NLO) yields at small-x (HI cuts, 3 times higher if relaxed).
- Nuclear effects in hadronization at small V (LO plus QW, Arleo '03).

$$R_A^h(z,\nu) = \frac{1}{N_A^e} \frac{\mathrm{d}N_A^h(z,\nu)}{\mathrm{d}\nu \,\mathrm{d}z} / \frac{1}{N_D^e} \frac{\mathrm{d}N_D^h(z,\nu)}{\mathrm{d}\nu \,\mathrm{d}z}$$

In-medium hadronization (II):

- Large (NLO) yields at small-x (HI cuts, 3 times higher if relaxed).
- Nuclear effects in hadronization at small V (LO plus QW, Arleo '03).

In-medium hadronization (II):

- Large (NLO) yields at small-x (HI cuts, 3 times higher if relaxed).
- Nuclear effects in hadronization at small V (LO plus QW, Arleo '03).

