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 LHeC - Low x Kinematics
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Physics at low xBj and in eA. 2

I. CDR, Chapter 4: Physics at High Parton Densities.

2. Highlights:
● ‘Benchmarking’ for pp/pA/AA: PDFs at small x.
● ‘Discovery’: novel regime of QCD at small x?
● Transverse scan of the hadron at small x.
● Dynamics of QCD radiation and hadronization.

3. Summary and outlook.

CDR, arXiv:1206.2913, submitted to JPG



CDR, Chapter 4:

3

● 81 pages (JPG format).

● 34 authors (thanks!!!).

● 4 conveners.

● 3(+2) referees.

Physics at low xBj and in eA.
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Chapter 4: physics

4

● Proton structure to a few 
10-20 m: Q2 lever arm.

● Precision QCD/EW physics.

● High-mass frontier 
(leptoquarks, excited fermions, 
contact interactions).

● Unambiguous access, in ep 
and eA, to a qualitatively novel 
regime of matter predicted by 
QCD.

● Substructure/parton dynamics 
inside nuclei with strong 
implications on QGP search.

Physics at low xBj and in eA.
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Legacy from HERA:

5

● Structure functions in an extended x-Q2 range, xg ∝1/xλ, λ>0.
● Large fraction of diffraction σdiff/σtot∼10%.
● But: no eA/eD, kinematical reach at small x, luminosity at high x /
for searches (odderon,...), flavour decomposition, TMDs,...

Physics at low xBj and in eA.
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Small x and saturation:

Physics at low xBj and in eA.

● QCD radiation of partons when x decreases leads to a large 
number of partons (gluons), provided each parton evolves 
independently (linearly, Δ[xg] ∝ xg).
● This independent evolution breaks at high densities (small x or 
high mass number A): non-linear effects (g↔gg, Δ[xg] ∝ xg - k(xg)2).
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Our aims: 
understanding

● The implications of 
unitarity in a QFT.

● The behaviour of QCD 
at large energies.

● The hadron wave 
function at small x.

● The initial conditions for 
the creation of a dense 
medium in heavy-ion 
collisions.

Origin in the early 80’s: GLR, Mueller et 
al, McLerran-Venugopalan.

xGA(x,Q2
s)

πR2
AQ2

s

∼ 1 =⇒ Q2
s ∝ A1/3x∼−0.3

The ‘QCD phase’ diagram:

Physics at low xBj and in eA.
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Our aims: 
understanding

● The implications of 
unitarity in a QFT.

● The behaviour of QCD 
at large energies.

● The hadron wave 
function at small x.

● The initial conditions for 
the creation of a dense 
medium in heavy-ion 
collisions.

Origin in the early 80’s: GLR, Mueller et 
al, McLerran-Venugopalan.

xGA(x,Q2
s)

πR2
AQ2

s

∼ 1 =⇒ Q2
s ∝ A1/3x∼−0.3

The ‘QCD phase’ diagram:

Questions:

● Theory: can the dense regime be 
described using pQCD techniques? Or 
non-perturbative - Regge, AdS/QCD,...?
Which factorisation is at work? [talk by 
Forte]

● Experiment: where in this plane do 
present/future experimental data lie?

Physics at low xBj and in eA.
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Status of small-x physics:
● Three pQCD-based alternatives to describe small-x ep and eA 
data (differences at moderate Q2(>Λ2QCD) and small x):
→ DGLAP evolution (fixed order PT).
→ Resummation schemes.
→ Saturation (CGC, dipole models).
● Non-linear effects (unitarity constraints) are density effects: 
where? ⇒ two-pronged approach at the LHeC: ↓ x / ↑ A.

8Physics at low xBj and in eA.



LHC vs. LHeC:

9

1105.3919

(Ee=140GeV	
  and	
  
Ep=7TeV)

● The LHeC will 
explore a region 
overlapping with 
the LHC but in a 
much cleaner 
manner.

Physics at low xBj and in eA.

pp@LHC

pPb@LHC
ePb@LHeC

ep@LHeC
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Relevance for the HI program:

● Nuclear 
wave 
function at 
small x: 
nuclear 
structure 
functions.

10Physics at low xBj and in eA.

● Particle production at 
the very beginning: which 
factorisation in eA?

● How does the system 
behave as ∼ isotropised 
so fast?: initial conditions 
for plasma formation to 
be studied in eA.

● Probing the 
medium through 
energetic particles 
(jet quenching 
etc.): modification 
of QCD radiation 
and hadronization 
in the nuclear 
medium.
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I. CDR, Chapter 4: Physics at High Parton Densities.

2. Highlights:
● ‘Benchmarking’ for pp/pA/AA: PDFs at small x.
● ‘Discovery’: novel regime of QCD at small x?
● Transverse scan of the hadron at small x.
● Dynamics of QCD radiation and hadronization.

3. Summary and outlook.

CDR, arXiv:1206.2913, submitted to JPG



Proton PDFs at small x:

12Physics at low xBj and in eA: 2. Highlights.

● Parton densities poorly known at small x and small to moderate 
Q2 [talks by Laycock and Radescu]: uncertainties in predictions. 
● LHeC will substantially reduce the uncertainties in global fits: FL 
and heavy flavour decomposition most useful.
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● Parton densities poorly known at small x and small to moderate 
Q2 [talks by Laycock and Radescu]: uncertainties in predictions. 
● LHeC will substantially reduce the uncertainties in global fits: FL 
and heavy flavour decomposition most useful.
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● Parton densities unconstrained at small x and small to moderate 
Q2 [talk by Zurita] ⇒ uncertainties in the predictions for 

observables within collinear factorisation: pPb@LHC.

Nuclear PDFs at small x (I):

13Physics at low xBj and in eA: 2. Highlights.

Valence Sea Glue

NLO DGLAP analysis
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● Parton densities unconstrained at small x and small to moderate 
Q2 [talk by Zurita] ⇒ uncertainties in the predictions for 

observables within collinear factorisation: pPb@LHC.

Nuclear PDFs at small x (I):

13Physics at low xBj and in eA: 2. Highlights.

Valence Sea Glue

NLO DGLAP analysis

Inclusive J/ψ

Uncertainties in 
the interpretation 
of HI data in terms 
of QGP properties.



Nuclear PDFs at small x (II):

14Physics at low xBj and in eA: 2. Highlights.

● F2 data substantially reduce the uncertainties in DGLAP analysis; 
inclusion of charm, beauty and FL also produce improvements.
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● LHeC F2 and FL data will have discriminatory power on models.

15

Effects beyond DGLAP?:

Physics at low xBj and in eA: 2. Highlights.
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NLO DGLAP cannot simultaneously accommodate LHeC F2 and 
FL data if saturation effects included according to current models.



Diffraction:

16
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Physics at low xBj and in eA: 2. Highlights.

● t conjugate 
to b: 
transverse 
scan of the 
hadron. 
● Large 
increase in M2, 
xP, β range.
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Elastic VM production in ep:

17

● Elastic J/ψ production 
appears as a candidate to 
signal saturation effects 
at work!!!

p p′

!r

!b
x x′

z

(1 − z)!r
1 − z

γ∗ E

Linear, 
sensitivity 
to (xg)2.

Non-linear, 
saturation.

Physics at low xBj and in eA: 2. Highlights.



Elastic VM production in eA:

18Physics at low xBj and in eA: 2. Highlights.

● For the coherent case, 
predictions available. 

● Challenging experimental 
problem.
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DVCS:

19

● Exclusive processes give information 
about GPDs, whose Fourier transform 
gives a tranverse scan of the hadron: 
DVCS sensitive to the singlet.
● Sensitive to dynamics e.g. non-linear 
effects.

DVCS, Ee=50 GeV, 1o,
pTγ,cut=2 GeV, 1 fb-1

DVCS, Ee=50 GeV, 10o,
pTγ,cut=5 GeV, 100 fb-1
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Physics at low xBj and in eA: 2. Highlights. Note the huge Q2!!!
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● Low energy: hadronization 
inside → formation time, (pre-)
hadronic absorption,...

● LHeC: dynamics of QCD radiation and hadronization.
● Most relevant for particle production off nuclei and for QGP 
analysis in HIC.

Radiation and hadronization:

∼ ratio of FFs A/p
● High energy: partonic evolution 
altered in the nuclear medium.

Physics at low xBj and in eA: 2. Highlights.
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Summary: 

21

● At an LHeC@CERN:
➜ Unprecedented access to small x in p and A for PDFs.
➜ Novel sensitivity to physics beyond standard pQCD.
➜ Stringent tests of QCD radiation and hadronization.
➜ High precision tests of collinear factorization(s).
➜ Transverse scan of the hadron at small x.
➜ ...

● The LHeC will answer the question of saturation/
non-linear dynamics. For that, ep AND eA essential!!!

Physics at low xBj and in eA.



Outlook: pending issues

22Physics at low xBj and in eA.

➜ Monte Carlo model for inclusive, semi-inclusive, diffractive and 
exclusive processes in ep and eA (with nuclear breakup) [talk by 
Plaetzer].

➜ Separation of coherent diffraction off nuclei.

➜ Radiative corrections [talk by Spiesberger].

➜ More realistic estimates of measurables yields: effects of 
backgrounds on jets, asymmetries for the odderon,...

➜ Detailed program for sensitivity to non-linear effects and for 
GPDs.

➜ Constraints from pp/pA/AA at the LHC [talk by Salgado].

➜ ...

Possibilities of synergies with other projects.

Thanks t
o Anna, 

Max an
d Paul!!!



● Chapter moved before BSM, right after Precision QCD and EW.

● Introduction refined: resummation moved, now
DGLAP ➝ resummation ➝ non-linear equations and saturation.

● GPD-related content enlarged [talk by Pire]:
◆ Theoretical introduction.
◆ Possibilities of measurement of
helicity-flip GPDs through exclusive
production

● Diffractive dijets included
as a test of hard collinear
factorisation [talk by Zlebcik].

Changes and additions (I):

23Physics at low xBj and in eA.
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◆ Theoretical introduction.
◆ Possibilities of measurement of
helicity-flip GPDs through exclusive
production

● Diffractive dijets included
as a test of hard collinear
factorisation [talk by Zlebcik].

Changes and additions (I):
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● Predictions for searching 
the odderon in ep➝eπ+π-p.

● SIDIS: yields and nuclear 
effects considered. 

● Dihadron azimuthal 
correlations studied as a 
possible signal of saturation.

● Section on nuclear 
diffraction rewritten and 
comments on the black disk 
limit added.

Changes and additions (II):
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Backup:
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Messages from HERA:

26

● Very good 
description 
of F2(c,b) (FL?)
within 
DGLAP, 
steep gluon 
in 1/x.

● Large 
fraction of 
diffraction 
σdiff/σtot∼10%
(Cooper-Sarkar, 

1206.0984).

Physics at low xBj and in eA.



LHeC scenarios:

27

● For FL: 10, 25, 50 + 2750 (7000); Q2≤sx; Lumi=5,10,100 pb-1 
respectively; charm and beauty: same efficiencies in ep and eA.
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Physics at low xBj and in eA.
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● Parton densities poorly determined at small x and small to 
moderate Q2 [talk by Radescu] ⇒ uncertainties in the predictions 

for observables within collinear factorisation.

Proton PDFs at small x (I):
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Photoproduction cross section:

29

● Small angle electron detector 62 m far from the interaction 
point: Q2<0.01 GeV, y∼0.3 ⇒ W∼0.5 √s.

● Substantial enlarging of the lever arm in W.

Pancheri et al ‘08

Physics at low xBj and in eA.



Implications for UHEν’s:

30

● ν-n/A cross section (τ energy loss) 
dominated by DIS structure functions / 
(n)pdfs at small-x and large (small) Q2.
● Key ingredient for estimating fluxes.

σtotνn

Physics at low xBj and in eA.



eA inclusive: comparison

31

● Good precision can be obtained for F2(c,b) and FL at small x 
(Glauberized 3-5 flavor GBW model, NA ’02).
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ep diffractive pseudodata:

32

● Large increase in 
the M2, xP=(M2-t
+Q2)/(W2+Q2), β=x/
xP region studied.
● Possibility to 
combine LRG and 
LPS.
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ep diffractive pseudodata:

32

● Large increase in 
the M2, xP=(M2-t
+Q2)/(W2+Q2), β=x/
xP region studied.
● Possibility to 
combine LRG and 
LPS.
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Note: diffraction in ep is linked to shadowing in eA
(Gribov): FGS, Capella-Kaidalov et al,...

Physics at low xBj and in eA.



Diffraction and non-linear dynamics:

33
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● Dipole models show differences with linear-based 
extrapolations (HERA-based dpdf’s) and among each other: 
possibility to check saturation and its realization.

β β
Physics at low xBj and in eA.



Diffractive dijets:

34

● Diffractive dijet and 
open heavy flavour 
production offer large 
possibilities for:
→ Checking 
factorization in hard 
diffraction.
→ Constraining DPDFs.

● Large yields upto large 
pTjet.

● Direct and resolved 
contributions: photon 
PDFs.
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Diffractive DIS on nuclear targets:

35

● Challenging 
experimental problem, 
requires Monte Carlo 
simulation with detailed 
understanding of the 
nuclear break-up.

● For the coherent case, 
predictions available. 
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Elastic VM production in ep:

36

● Most promising!!!

Physics at low xBj and in eA.



Odderon:

37

● Odderon (C-odd exchange contributing to particle-antiparticle 
difference in cross section) seached in
or through O-P interferences.

● Sizable charge 
asymmetry, yields 
and reconstruction 
pending.

Physics at low xBj and in eA.



Transverse scan: elastic VM

38

● t-differential 
measurements 
give a gluon 
tranverse 
mapping of the 
hadron/nucleus.

Physics at low xBj and in eA.
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Transversity GPDs:

39

● Chiral-odd transversity 
GPDs are largely unknown.

● They can be accessed 
through double exclusive 
production:
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Dijet azimuthal decorrelation:

40

● Studying dijet azimuthal decorrelation or forward jets (pT∼Q) 
would allow to understand the mechanism of radiation:
→ kT-ordered: DGLAP.
→ kT-disordered: BFKL.
→ Saturation?
● Further imposing a rapidity gap
(diffractive jets) would be most
interesting: perturbatively
controllable observable.
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Dynamics of QCD radiation:

41

● Studying dijet azimuthal decorrelation or forward jets (pT∼Q) 
would allow to understand the mechanism of radiation:
→ kT-ordered: DGLAP.
→ kT-disordered: BFKL-like.
→ Saturation?

Physics at low xBj and in eA.



Dihadron azimuthal decorrelation:

42

● Dihadron azimuthal decorrelation is currently discussed at RHIC 
as one of the most suggestive indications of saturation.

● At the LHeC it could be studied far from the kinematical limits.

Albacete-Marquet ’10 pTlead>3 GeV
pTass>2 GeV
zlead=zass=0.3

y=0.7
Q2=4 GeV2 

Physics at low xBj and in eA.



43

● Low energy: need of 
hadronization inside → 
formation time, (pre-)
hadronic absorption,...

● High energy: 
partonic evolution 
altered in the nuclear 
medium, partonic 
energy loss.

● The LHeC (νmax∼105 GeV) would allow to study the dynamics 
of hadronization, testing the parton/hadron eloss mechanism by 
introducing a length of colored material which would modify its 
pattern (length/nuclear size, chemical composition). 

Brooks at Divonne’09

In-medium hadronization (I):

Physics at low xBj and in eA.



5o<θπ<25o, xπ>0.01

Daleo et al. ’04
Data: H1 ’04

formation time
effects

In-medium hadronization (II):

44

● Large (NLO) yields at small-x (H1 cuts, 3 times higher if relaxed).
● Nuclear effects in hadronization at small ν (LO plus QW, Arleo ’03).

Physics at low xBj and in eA.



In-medium hadronization (II):

44

● Large (NLO) yields at small-x (H1 cuts, 3 times higher if relaxed).
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Physics at low xBj and in eA.



In-medium hadronization (II):

44

● Large (NLO) yields at small-x (H1 cuts, 3 times higher if relaxed).
● Nuclear effects in hadronization at small ν (LO plus QW, Arleo ’03).

Physics at low xBj and in eA.


