2012 CERN-ECFA-NuPECC Workshop on the LHeC Chavannes-de-Bogis, June 14th 2012 **LHeC - Low x Kinematics** for the LHeC Study group, http://cern.ch/lhec #### Contents: #### I. CDR, Chapter 4: Physics at High Parton Densities. - 2. Highlights: - 'Benchmarking' for pp/pA/AA: PDFs at small x. - 'Discovery': novel regime of QCD at small x? - Transverse scan of the hadron at small x. - Dynamics of QCD radiation and hadronization. - 3. Summary and outlook. CDR, arXiv:1206.2913, submitted to JPG ### CDR, Chapter 4: - 81 pages (JPG format). - 34 authors (thanks!!!). - 4 conveners. Néstor Armesto (University of Santiago de Compostela) Brian A. Cole (Columbia University, New York) Paul R. Newman (University of Birmingham) Anna M. Stasto (Pennsylvania State University) • 3(+2) referees. Michele Arneodo (INFN, Torino) Alfred Mueller (Columbia University, New York) Raju Venugopalan (BNL, Brookhaven) J.L.Abelleira Fernandez 16,23 , C.Adolphsen 57 , A.N.Akay
 03 , H.Aksakal 39 , J.L.Albacete
 52 , S.Alekhin 17,5 P.Allport
 24 , V.Andreev 34 , R.B.Appleby
 14,30 , E.Arikan 39 , N.Armesto
 53,a , G.Azuelos 33,64 , $\mathrm{M.Bai}^{37}, \mathrm{D.Barber}^{14,17,24}, \mathrm{J.Bartels}^{18}, \mathrm{O.Behnke}^{17}, \mathrm{J.Behr}^{17}, \mathrm{A.S.Belyaev}^{15,56}, \mathrm{I.Ben-Zvi}^{37}$ N.Bernard²⁵, S.Bertolucci¹⁶, S.Bettoni¹⁶, S.Biswal⁴¹, J.Blümlein¹⁷, H.Böttcher¹⁷, A.Bogacz³⁰ C.Bracco¹⁶, G.Brandt⁴⁴, H.Braun⁶⁵, S.Brodsky^{57,6}, O.Brüning¹⁶, E.Bulyak¹², A.Buniatyan¹⁷ H.Burkhardt¹⁶, I.T.Cakir⁰², O.Cakir⁰¹, R.Calaga¹⁶, V.Cetinkaya⁰¹, E.Ciapala¹⁶, R.Ciftci⁰¹ A.K.Ciftci⁰¹, B.A.Cole³⁸, J.C.Collins⁴⁸, O.Dadoum⁴², J.Dainton²⁴, A.De.Roeck¹⁶, D.d'Enterria¹⁶ A.Dudarev¹⁶, A.Eide⁶⁰, R.Enberg⁶³, E.Eroglu⁶², K.J.Eskola²¹, L.Favart⁰⁸, M.Fitterer¹⁶, S.Forte³², A.Gaddi¹⁶, P.Gambino⁵⁹, H.García Morales¹⁶, T.Gehrmann⁶⁹, P.Gladkikh¹², C.Glasman²⁸ R.Godbole³⁵, B.Goddard¹⁶, T.Greenshaw²⁴, A.Guffanti¹³, V.Guzey^{19,36}, C.Gwenlan⁴⁴, T.Han⁵⁰, Y.Hao³⁷, F.Haug¹⁶, W.Herr¹⁶, A.Hervé²⁷, B.J.Holzer¹⁶, M.Ishitsuka⁵⁸, M.Jacquet⁴², B.Jeanneret¹⁶, J.M.Jimenez¹⁶, J.M.Jowett¹⁶, H.Jung¹⁷, H.Karadeniz⁰², D.Kayran³⁷, A.Kilic⁶², K.Kimura⁵⁸, M.Klein²⁴, U.Klein²⁴, T.Kluge²⁴, F.Kocak⁶², M.Korostelev²⁴, A.Kosmicki¹⁶, P.Kostka¹⁷ $H.Kowalski^{17},G.Kramer^{18},D.Kuchler^{16},M.Kuze^{58},T.Lappi^{21,c},P.Laycock^{24},E.Levichev^{40},\\$ S.Levonian¹⁷, V.N.Litvinenko³⁷, A.Lombardi¹⁶, J.Maeda⁵⁸, C.Marquet¹⁶, B.Mellado²⁷, K.H.Mess¹⁶ A.Milanesa¹⁶, S.Moch¹⁷, I.I.Morozov⁴⁰, Y.Muttoni¹⁶, S.Myers¹⁶, S.Nandi⁵⁵, Z.Nergiz³⁹, P.R.Newman⁰⁶, T.Omori⁶¹, J.Osborne¹⁶, E.Paoloni⁴⁹, Y.Papaphilippou¹⁶, C.Pascaud⁴², H.Paukkunen⁵³, E.Perez¹⁶, T.Pieloni²³, E.Pilicer⁶², B.Pire⁴⁵, R.Placakyte¹⁷, A.Polini⁰⁷ V.Ptitsyn³⁷, Y.Pupkov⁴⁰, V.Radescu¹⁷, S.Raychaudhuri³⁵, L.Rinolfi¹⁶, R.Rohini³⁵, J.Rojo^{16,31} S.Russenschuck¹⁶, M.Sahin⁰³, C.A.Salgado^{53,a}, K.Sampei⁵⁸, R.Sassot⁰⁹, E.Sauvan⁰⁴, U.Schneekloth¹⁷ T.Schörner-Sadenius¹⁷, D.Schulte¹⁶, A.Senol²², A.Servi⁴⁴, P.Sievers¹⁶, A.N.Skrinsky⁴⁰, W.Smith²⁷, H.Spiesberger²⁹, A.M.Stasto^{48,d}, M.Strikman⁴⁸, M.Sullivan⁵⁷, S.Sultansoy^{03,e}, Y.P.Sun⁵⁷ B.Surrow¹¹, L.Szymanowski^{66,f}, P.Taels⁰⁵, I.Tapan⁶², T.Tasci²², E.Tassi¹⁰, H.Ten.Kate¹⁶ J.Terron²⁸, H.Thiesen¹⁶, L.Thompson^{14,30}, K.Tokushuku⁶¹, R.Tomás García¹⁶, D.Tommasini¹⁶ D.Trbojevic³⁷, N.Tsoupas³⁷, J.Tuckmantel¹⁶, S.Turkoz⁰¹, T.N.Trinh⁴⁷, K.Tywoniuk²⁶, G.Unel²⁰ J.Urakawa⁶¹, P.VanMechelen⁰⁵, A.Variola⁵², R.Veness¹⁶, A.Vivoli¹⁶, P.Vobly⁴⁰, J.Wagner⁶⁶ R. Wallny⁶⁸, S. Wallon^{43,46,f}, G. Watt¹⁶, C. Weiss³⁶, U.A. Wiedemann¹⁶, U. Wienands⁵⁷, F. Willeke³⁷ B.-W.Xiao⁴⁸, V.Yakimenko³⁷, A.F.Zarnecki⁶⁷, Z.Zhang⁴², F.Zimmermann¹⁶, R.Zlebcik⁵¹, | 4 | Phy | sics at | t High Parton Densities | 102 | |---|---------------------------|---------|--|-----| | | 4.1 Physics at small x | | | 102 | | | | 4.1.1 | High energy and density regime of QCD | 102 | | | | 4.1.2 | Status following HERA data | 110 | | | | 4.1.3 | Low- x physics perspectives at the LHC | 117 | | | | 4.1.4 | Nuclear targets | 120 | | | 4.2 Prospects at the LHeC | | | 125 | | | | 4.2.1 | Strategy: decreasing x and increasing A | 125 | | | | 4.2.2 | Inclusive measurements | 125 | | | | 4.2.3 | Exclusive production | 133 | | | | 4.2.4 | Inclusive diffraction | 153 | | | | 4.2.5 | Jet and multi-jet observables, parton dynamics and fragmentation | 167 | | | | 4.2.6 | Implications for ultra-high energy neutrino interactions and detection | 179 | ### Chapter 4: physics - Proton structure to a few 10⁻²⁰ m: Q² lever arm. - Precision QCD/EW physics. - High-mass frontier (leptoquarks, excited fermions, contact interactions). - Unambiguous access, in ep and eA, to a qualitatively novel regime of matter predicted by QCD. - Substructure/parton dynamics inside nuclei with strong implications on QGP search. ### Legacy from HERA: - Structure functions in an extended x-Q² range, xg $\propto I/x^{\lambda}$, $\lambda > 0$. - Large fraction of diffraction $\sigma_{diff}/\sigma_{tot} \sim 10\%$. - But: no eA/eD, kinematical reach at small x, luminosity at high x / for searches (odderon,...), flavour decomposition, TMDs,... #### Small x and saturation: - QCD radiation of partons when x decreases leads to a large number of partons (gluons), provided each parton evolves independently (linearly, $\Delta[xg] \propto xg$). - This independent evolution breaks at high densities (small x or high mass number A): non-linear effects ($g \leftrightarrow gg$, $\Delta[xg] \propto xg k(xg)^2$). #### Small x and saturation: • QCD radiation of partons when x decreases leads to a large number of partons (gluons), provided each parton evolves independently (linearly, $\Delta[xg] \propto xg$). • This independent evolution breaks at high densities (small x or high mass number A): non-linear effects ($g \leftrightarrow gg$, $\Delta[xg] \propto xg - k(xg)^2$). ### The 'QCD phase' diagram: Origin in the early 80's: GLR, Mueller et al, McLerran-Venugopalan. ## Our aims: understanding - The implications of unitarity in a QFT. - The behaviour of QCD at large energies. - The hadron wave function at small x. - The initial conditions for the creation of a dense medium in heavy-ion collisions. ### The 'QCD phase' diagram: Origin in the early 80's: GLR, Mueller et al, McLerran-Venugopalan. • The Initial conditions for the creation of a dense medium in heavy-ion collisions. ### Status of small-x physics: - Three pQCD-based alternatives to describe small-x ep and eA data (differences at moderate $Q^2(>\Lambda^2_{QCD})$ and small x): - → DGLAP evolution (fixed order PT). - → Resummation schemes. - → Saturation (CGC, dipole models). - Non-linear effects (unitarity constraints) are density effects: where? \Rightarrow two-pronged approach at the LHeC: $\downarrow x / \uparrow A$. #### LHC vs. LHeC: • The LHeC will explore a region overlapping with the LHC but in a much cleaner manner. #### LHC vs. LHeC: • The LHeC will explore a region overlapping with the LHC but in a much cleaner manner. ### LH Relevance for the HI program: Nuclear wave function at small x: nuclear structure functions. - Particle production at the very beginning: which factorisation in eA? - How does the system behave as ~ isotropised so fast?: initial conditions for plasma formation to be studied in eA. - Probing the medium through energetic particles (jet quenching etc.): modification of QCD radiation and hadronization in the nuclear medium. #### Contents: I. CDR, Chapter 4: Physics at High Parton Densities. #### 2. Highlights: - 'Benchmarking' for pp/pA/AA: PDFs at small x. - 'Discovery': novel regime of QCD at small x? - Transverse scan of the hadron at small x. - Dynamics of QCD radiation and hadronization. - 3. Summary and outlook. CDR, arXiv:1206.2913, submitted to JPG #### Proton PDFs at small x: - Parton densities poorly known at small x and small to moderate Q² [talks by Laycock and Radescu]: uncertainties in predictions. - LHeC will substantially reduce the uncertainties in global fits: F_L and heavy flavour decomposition most useful. Physics at low x_{Bj} and in eA: 2. Highlights. #### Proton PDFs at small x: - Parton densities poorly known at small x and small to moderate Q² [talks by Laycock and Radescu]: uncertainties in predictions. - LHeC will substantially reduce the uncertainties in global fits: F_L and heavy flavour decomposition most useful. #### LHO Nuclear PDFs at small x (I): Parton densities unconstrained at small x and small to moderate Q² [talk by Zurita] ⇒ uncertainties in the predictions for observables within collinear factorisation: pPb@LHC. Physics at low x_{Bj} and in eA: 2. Highlights. #### LHO Nuclear PDFs at small x (I): Parton densities unconstrained at small x and small to moderate Q² [talk by Zurita] ⇒ uncertainties in the predictions for observables within collinear factorisation: pPb@LHC. ### LHO Nuclear PDFs at small x (II): \bullet F₂ data substantially reduce the uncertainties in DGLAP analysis; inclusion of charm, beauty and F_L also produce improvements. ### LHO Nuclear PDFs at small x (II): • F_2 data substantially reduce the uncertainties in DGLAP analysis; inclusion of charm, beauty and F_L also produce improvements. ### LHO Nuclear PDFs at small x (II): \bullet F₂ data substantially reduce the uncertainties in DGLAP analysis; inclusion of charm, beauty and F_L also produce improvements. ### Effects beyond DGLAP?: • LHeC F₂ and F_L data will have discriminatory power on models. #### Effects beyond DGLAP?: NLO DGLAP cannot simultaneously accommodate LHeC F_2 and F_L data if saturation effects included according to current models. #### Diffraction: - t conjugate to b: transverse scan of the hadron. - Large increase in M², x_P, β range. Diffractive Kinematics at x_{IP}=0.01 Physics at low x_{Bj} and in eA: 2. Highlights. #### Diffraction: ### HeO Elastic VM production in ep: ### LHO Elastic VM production in eA: • For the coherent case, predictions available. \ Challenging experimental problem. #### **DVCS**: - Exclusive processes give information about GPDs, whose Fourier transform gives a tranverse scan of the hadron: DVCS sensitive to the singlet. - Sensitive to dynamics e.g. non-linear effects. DVCS, E_e =50 GeV, 10° , $p_T^{Y,cut}$ =5 GeV, 100 fb^{-1} Physics at low x_{Bi} and in eA: 2. Highlights. #### Radiation and hadronization: • LHeC: dynamics of QCD radiation and hadronization. Most relevant for particle production off nuclei and for QGP analysis in HIC. Low energy: hadronization inside \rightarrow formation time, (pre-) hadronic absorption,... • High energy: partonic evolution altered in the nuclear medium. ~ ratio of FFs A/p MSTW08L0, qhat=0MSTW08LO+EPS09, qhat=0 MSTW08L0+EPS09, qhat=0.72, L_{max} 0.5 MSTW08L0+EPS09, qhat=0.72, t_{form} ν (GeV) $R_A^h(z,\nu) = \frac{1}{N_A^e} \frac{\mathrm{d}N_A^h(z,\nu)}{\mathrm{d}\nu \,\mathrm{d}z} / \frac{1}{N_D^e} \frac{\mathrm{d}N_D^h(z,\nu)}{\mathrm{d}\nu \,\mathrm{d}z}$ ### Summary: #### • At an LHeC@CERN: - → Unprecedented access to small x in p and A for PDFs. - → Novel sensitivity to physics beyond standard pQCD. - → Stringent tests of QCD radiation and hadronization. - → High precision tests of collinear factorization(s). - → Transverse scan of the hadron at small x. - **→** ... #### • The LHeC will answer the question of saturation/ non-linear dynamics. For that, ep AND eA essential!!! ### Outlook: pending issues - → Monte Carlo model for inclusive, semi-inclusive, diffractive and exclusive processes in ep and eA (with nuclear breakup) [talk by Plaetzer]. Thanks to Anna, Max and Paul!!! - → Separation of coherent diffraction off nuclei. - → Radiative corrections [talk by Spiesberger]. - → More realistic estimates of measurables yields: effects of backgrounds on jets, asymmetries for the odderon,... - → Detailed program for sensitivity to non-linear effects and for GPDs. - → Constraints from pp/pA/AA at the LHC [talk by Salgado]. Possibilities of synergies with other projects. ### LHeC ### Changes and additions (I): - Chapter moved before BSM, right after Precision QCD and EW. - Introduction refined: resummation moved, now DGLAP → resummation → non-linear equations and saturation. - GPD-related content enlarged [talk by Pire]: - ◆ Theoretical introduction. - ◆ Possibilities of measurement of helicity-flip GPDs through exclusive production $$ep(p_2) \to e' \gamma_{L/T}^{(*)}(q) \ p(p_2) \to e' \rho_{L,T}^0(q_\rho) \ \rho_T(p_\rho) \ N'(p_{2'})$$ • Diffractive dijets included as a test of hard collinear factorisation [talk by Zlebcik]. ### LHeC ### Changes and additions (I): - Chapter moved before BSM, right after Precision QCD and EW. - Introduction refined: resummation moved, now DGLAP → resummation → non-linear equations and saturation. - GPD-related content enlarged [talk by Pire]: - ◆ Theoretical introduction. - ◆ Possibilities of measurement of helicity-flip GPDs through exclusive production $$ep(p_2) \to e' \gamma_{L/T}^{(*)}(q) \ p(p_2) \to e' \rho_{L,T}^0(q_\rho) \ \rho_T(p_\rho) \ N'(p_{2'})$$ • Diffractive dijets included as a test of hard collinear factorisation [talk by Zlebcik]. ### Changes and additions (II): 0.08 0.04 0.00 2.6 2.8 3.0 3.2 3.4 3.6 - Predictions for searching the odderon in ep \rightarrow e $\pi^+\pi^-$ p. - SIDIS: yields and nuclear effects considered. - Dihadron azimuthal correlations studied as a possible signal of saturation. - Section on nuclear diffraction rewritten and comments on the black disk limit added. #### π^0 spectrum $5^{\circ} < \theta_{\pi} < 25^{\circ},$ $x_{\pi} = E_{\pi}/E_{p} > 0.0 I$ # Dihadron azimuthal correlation $pT^{lead}>3 GeV$ $pT^{ass}>2 GeV$ $z_{lead}=z_{ass}=0.3$ y=0.7 $Q^2=4 GeV^2$ ## Backup: ### Messages from HERA: Very good description of $F_{2(c,b)}$ (F_{L} ?) within DGLAP, steep gluon in I/x. Large fraction of diffraction $\sigma_{\text{diff}}/\sigma_{\text{tot}} \sim 10\%$ (Cooper-Sarkar, 1206.0984). #### LHeC scenarios: | config | g. | E(e) | E(N) | \mathbf{N} | $\int L(e^+)$ | $\int L(e^{-})$ | Pol L | /10 ³² P/ | MW | yea | rs type | |--------------------|----|------|------|--------------|---------------|-----------------|--------|----------------------|-----|-----|-------------| | For F ₂ | | | | | | | | | | | | | A | | 20 | 7 | p | 1 | 1 | - | 1 | 10 | 1 | SPL | | В | | 50 | 7 | p | 50 | 50 | 0.4 | 25 | 30 | 2 | $RR hiQ^2$ | | C | | 50 | 7 | p | 1 | 1 | 0.4 | 1 | 30 | 1 | RR lo x | | D | | 100 | 7 | p | 5 | 10 | 0.9 | 2.5 | 40 | 2 | LR | | Е | | 150 | 7 | p | 3 | 6 | 0.9 | 1.8 | 40 | 2 | LR | | F | | 50 | 3.5 | D | 1 | 1 | | 0.5 | 30 | 1 | eD | | G | | 50 | 2.7 | Pb | 10-4 | 10-4 | 0.4 | 10-3 | 30 | 1 | ePb | | Н | | 50 | 1 | p | | 1 | | 25 | 30 | 1 | lowEp | | | | 50 | 3.5 | Ca | 5 · 10-4 | | ? | 5·10 | 3 ? | ? | eCa | • For F_L : 10, 25, 50 + 2750 (7000); $Q^2 \le sx$; Lumi=5, 10, 100 pb⁻¹ respectively; charm and beauty: same efficiencies in ep and eA. # LHeO Proton PDFs at small x (I): • Parton densities poorly determined at small x and small to moderate Q^2 [talk by Radescu] \Rightarrow uncertainties in the predictions for observables within collinear factorisation. # LHeC # Proton PDFs at small x (I): • Parton densities poorly determined at small x and small to moderate Q^2 [talk by Radescu] \Rightarrow uncertainties in the predictions for observables within collinear factorisation. # LHeC #### Photoproduction cross section: • Small angle electron detector 62 m far from the interaction point: Q²<0.01 GeV, $y\sim0.3 \Rightarrow W\sim0.5 \sqrt{s}$. Substantial enlarging of the lever arm in W. ### Implications for UHEv's: x_{eut} - V-n/A cross section (T energy loss) dominated by DIS structure functions / (n)pdfs at small-x and large (small) Q². - Key ingredient for estimating fluxes. 10-12 0.0 # eA inclusive: comparison • Good precision can be obtained for $F_{2(c,b)}$ and F_L at small x (Glauberized 3-5 flavor GBW model, NA '02). Physics at low x_{Bj} and in eA. ### ep diffractive pseudodata: - Large increase in the M², x_P=(M²-t +Q²)/(W²+Q²), β=x/x_P region studied. - Possibility to combine LRG and LPS. Physics at low x_{Bj} and in eA. ## ep diffractive pseudodata: • Large increase in the M^2 , $x_P = (M^2 - t + O^2)/(W^2 + O^2)$ $\beta = x/2$ Note: diffraction in ep is linked to shadowing in eA (Gribov): FGS, Capella-Kaidalov et al,... # LHO Diffraction and non-linear dynamics: • Dipole models show differences with linear-based extrapolations (HERA-based dpdf's) and among each other: possibility to check saturation and its realization. #### Diffractive dijets: Diffractive DIS Q²>2 (100 fb⁻¹) 10⁵ 59 10⁵ 10³ p 10² 10⁻³ 10⁻³ 10⁻⁴ 10⁻⁵ - Diffractive dijet and open heavy flavour production offer large possibilities for: - → Checking factorization in hard diffraction. - → Constraining DPDFs. - Large yields upto large pT^{jet}. - Direct and resolved contributions: photon PDFs. ## LHO Diffractive DIS on nuclear targets: - Challenging experimental problem, requires Monte Carlo simulation with detailed understanding of the nuclear break-up. - For the coherent case, predictions available. # He Elastic VM production in ep: #### Odderon: • Odderon (C-odd exchange contributing to particle-antiparticle difference in cross section) seached in $\gamma^{(\star)}p \to Cp$, where $C = \pi^0, \eta, \eta', \eta_c \dots$ or through O-P interferences. Sizable charge asymmetry, yields and reconstruction pending. #### Transverse scan: elastic VM • t-differential measurements give a gluon tranverse mapping of the hadron/nucleus. ## Transversity GPDs: - Chiral-odd transversity GPDs are largely unknown. - They can be accessed through double exclusive production: $$ep(p_2) \to e' \gamma_{L/T}^{(*)}(q) \ p(p_2) \to e' \rho_{L,T}^0(q_\rho) \ \rho_T(p_\rho) \ N'(p_{2'}) \longrightarrow_{p}$$ # LHeC #### Dijet azimuthal decorrelation: - Studying dijet azimuthal decorrelation or forward jets ($p_T \sim Q$) would allow to understand the mechanism of radiation: - → k_T-ordered: DGLAP. - → k_T-disordered: BFKL. - → Saturation? - Further imposing a rapidity gap (diffractive jets) would be most interesting: perturbatively controllable observable. #### Dynamics of QCD radiation: - Studying dijet azimuthal decorrelation or forward jets (p_T~Q) would allow to understand the mechanism of radiation: - → k_T-ordered: DGLAP. #### LHO Dihadron azimuthal decorrelation: - Dihadron azimuthal decorrelation is currently discussed at RHIC as one of the most suggestive indications of saturation. - At the LHeC it could be studied far from the kinematical limits. ## In-medium hadronization (I): - The LHeC (V_{max}~ I0⁵ GeV) would allow to study the dynamics of hadronization, testing the parton/hadron eloss mechanism by introducing a length of colored material which would modify its pattern (length/nuclear size, chemical composition). - Low energy: need of hadronization inside → formation time, (pre-) hadronic absorption,... Brooks at Divonne'09 High energy: partonic evolution altered in the nuclear medium, partonic energy loss. ## In-medium hadronization (II): - Large (NLO) yields at small-x (HI cuts, 3 times higher if relaxed). - Nuclear effects in hadronization at small V (LO plus QW, Arleo '03). $$R_A^h(z,\nu) = \frac{1}{N_A^e} \frac{\mathrm{d}N_A^h(z,\nu)}{\mathrm{d}\nu \,\mathrm{d}z} / \frac{1}{N_D^e} \frac{\mathrm{d}N_D^h(z,\nu)}{\mathrm{d}\nu \,\mathrm{d}z}$$ ## In-medium hadronization (II): - Large (NLO) yields at small-x (HI cuts, 3 times higher if relaxed). - Nuclear effects in hadronization at small V (LO plus QW, Arleo '03). ### In-medium hadronization (II): - Large (NLO) yields at small-x (HI cuts, 3 times higher if relaxed). - Nuclear effects in hadronization at small V (LO plus QW, Arleo '03).