IR AND LSS DESIGN FOR A RING-RING LHeC

Luke Thompson, Robert B. Appleby (The University of Manchester; Cockcroft Institute), Helmut Burkhardt, Bernhard Holzer (CERN), Miriam

Fitterer (CERN; KIT), Max Klein (CERN; University of Liverpool), Peter Kostka (DESY), Nathan Bernard (UCLA)

Outline

- Complete conceptual LHeC Ring-Ring IR and LSS Solution
- CDR and beyond
- Electron Interaction Region
- Beam Separation
- Acceptance vs Luminosity
- Synchrotron Radiation
- LHC IR Integration
- Beam Separation
- Second Proton Beam
- Electron Long Straight Section
- Geometry
- Integration with LHC
- CDR solution
- Further development

Outline

- Complete conceptual LHeC Ring-Ring IR and LSS Solution
- CDR and beyond
- Electron Interaction Region
- Beam Separation
- Acceptance vs Luminosity
- Synchrotron Radiation
- LHC IR Integration
- Beam Separation
- Second Proton Beam
- Electron Long Straight Section
- Geometry
- Integration with LHC
- CDR solution
- Further development

Electron IR: Overview

- Large kinematic range
- For high Q^{2} and x, high luminosity
- For low Q^{2} and x, sensitivity at high rapidity
- Manageable SR
- Minimal beam-beam
- Integration with two
 proton beams

Electron IR: Beam Separation

- Beam-beam considerations
- Parasitic interactions every 3.75 m
- Bunch spacing $25 n \mathrm{n}$
- $5 \sigma_{p}+5 \sigma_{e}$ separation at each parasitic node
- Proton IR integration
- $>55 \mathrm{~mm}$ separation at $\pm 22.96 \mathrm{~m}$ to avoid proton quad fields
- Discussed later
- "Toolkit":
- Separation dipoles
- Produces SR
- IP crossing angle
- Decreases luminosity
- Offset quadrupoles

Detector Acceptance

Electron IR: Acceptance

- Two IR layouts
- High Acceptance (HA)
- Electron triplet outside detector
- $L^{*}=6.2 \mathrm{~m}$
- 1° acceptance (nominal)
- Sensitivity at small angles
- High Luminosity (HL)
- Electron triplet embedded in detector
- $L^{*}=1.2 \mathrm{~m}$
- 10° acceptance
- Higher luminosity via tighter focusing

Detector Acceptance: $1^{\circ} / \mathrm{HA}$

Detector Acceptance: 10º / HL

Electron IR: High Acceptance

$L(0)$	8.54×10^{32}
θ	1×10^{-3}
$S(\theta)$	0.858
$L(\theta)$	7.33×10^{32}
$\beta_{x^{*}}$	0.4 m
$\beta_{y^{*}}$	0.2 m
$\sigma_{x^{*}}$	$4.47 \times 10^{-5} \mathrm{~m}$
$\sigma_{y^{*}}$	$2.24 \times 10^{-5} \mathrm{~m}$
SR Power	51 kW
E_{c}	163 keV

Electron IR: High Luminosity

$L(0)$	1.8×10^{33}
θ	1×10^{-3}
$S(\theta)$	0.746
$L(\theta)$	1.34×10^{33}
$\beta_{x^{*}}$	0.18 m
$\beta_{y^{*}}$	0.1 m
$\sigma_{x^{*}}$	$3.00 \times 10^{-5} \mathrm{~m}$
$\sigma_{y^{*}}$	$1.58 \times 10^{-5} \mathrm{~m}$
SR Power	33 kW
E_{c}	126 keV

F	D	F	\square	DIPOLE

Electron IR: SR

	Power [kW]		Critical Energy [keV]			Power [kW]		Critical Energy [keV]	
	Geant4	IRSYN	Geant4	IRSYN		Geant4	IRSYN	Geant4	IRSYN
Total/Avg	33.2	33.7	126	126	Total/Avg	51.1	51.3	163	162

SR power incident on face of proton quadrupole

Absorber
Incident photons

Luke Thompson

Outline

- Complete conceptual LHeC Ring-Ring IR and LSS Solution
- CDR and beyond
- Electron Interaction Region
- Beam Separation
- Acceptance vs Luminosity
- Synchrotron Radiation
- LHC IR Integration
- Beam Separation
- Second Proton Beam
- Electron Long Straight Section
- Geometry
- Integration with LHC
- CDR solution
- Further development

LHC IR Integration

- Shared beampipe between $\pm 22.96 \mathrm{~m}$
- Proton final triplet at $\pm 22.96 \mathrm{~m}$

LHC IR Integration: Beam Separation

- Electron beam must not pass through proton fields
- Require separation between beams at $\pm 22.96 \mathrm{~m}$
- Proton quad yoke $\sim 200 \mathrm{~mm}$ radius
- Infeasible to separate beams this much
- Proton half-quadrupole design
- Quasi field-free aperture for electron beam
- Beam separation $>55 \mathrm{~mm}$ at $\pm 22.96 \mathrm{~m}$
- 55 mm separation achievable
- Combination of crossing angle, dipoles, offset quadrupoles

LHC IR Integration: $2^{\text {nd }}$ Proton Beam

- Second proton beam
- Must not collide with p or e beams
- Minimise beam-beam interaction
- Detector: shared beam pipe
- Toolkit:
- Bunch offset
- No collision at IP
- Can co-rotate with electron beam
- Crossing angle
- "Unsqueezed" optics
- Cannot pass through proton triplet
- Matched via LSS2 matching section
- Proton half-quadrupole Q1
- Use electron aperture
- Tailor p-p crossing angle for this purpose

LHC IR Integration: Proton Quadrupoles

- Q1: Half quadrupole
- Large low-field electron aperture
- Q2, Q3: Conventional SC quads
- Low field pockets used as apertures
- Yokes can be up to 270 mm radius

LHC IR Integration: $2^{\text {nd }}$ Proton Beam

Beam trajectories for HA IR

LHC IR Integration: 2nd Proton Beam HA

Proton triplet apertures for HA IR - 3.4mrad p-p crossing angle

LHC IR Integration: $2^{\text {nd }}$ Proton Beam HL

Proton triplet apertures for HL IR - 3.0mrad p-p crossing angle

Outline

- Complete conceptual LHeC Ring-Ring IR and LSS Solution
- CDR and beyond
- Electron Interaction Region
- Beam Separation
- Acceptance vs Luminosity
- Synchrotron Radiation
- LHC IR Integration
- Beam Separation
- Second Proton Beam
- Electron Long Straight Section
- Geometry
- Integration with LHC
- CDR solution
- Further development

Electron LSS: Overview

- Transport
- Ring - IR - Ring
- Well-matched optics
- Adhere to LHC space constraints
- Manageable SR

Electron LSS: Geometry

- Complex bending required
- LHeC ring 1 m above LHC
- Account for IR horizontal separation scheme
- $\sim 60 \mathrm{~cm}$ radial offse
- Dipoles generate SR
- Dispersion couples geometry and optics
- Existing dispersion suppressors in ring lattice
- Designed to match horizontal dispersion
- No equivalent systems for vertical dispersion
- Large vertical bending required in LSS

Electron LSS: Achromatic Bending

- Difficult to deal with large amounts of vertical dispersion
- Use Double Bend Achromat modules

- Optical match still difficult due to strong quads
- Characteristic twiss shape
- Non-negligible contribution to SR
- Mainly from dipoles

Electron LSS: CDR version

- Does not incorporate non-colliding beam solution
- Limited flexibility to avoid LHC conflicts

Electron LSS: LVS version

- "Late Vertical Separation" (LVS)
- Allows horizontal separation to propagate before starting vertical bends
- Aided by non-colliding beam solution which adds crossing angle
- More flexibility to avoid conflicts with LHC elements

Electron LSS: SR

- Significant but manageable levels of SR
- CDR version:
- ~1.3 MW total SR power
- Compare to $\sim 50 \mathrm{MW}$ for ring lattice
- LVS version:
- ~1.5 MW total SR power
- Good agreement between simulations and analytic methods
- Ongoing work on SR study and optimisation

Summary

- Complete conceptual solution for Ring-Ring LSS and IR
- All major issues solved, or shown to be solvable
- Technically incomplete but flexibility for further iterations
- General Manchester/Cockcroft interest in continuing on and helping with Linac-Ring

