Measuring very forward (backward) at the LHeC

Armen Buniatyan

Detectors located outside of the main detector ($\sim 10 \div 100 \mathrm{~m}$ from the Interaction Point)

Goals:

- Instantaneous luminosity
- Tag photo-production ($\left.Q^{2} \sim 0\right)$
- Luminosity Detectors, Electron Tagger
- Very forward nucleons
- Zero Degree Calorimeter, Forward Proton Spectrometer

Goals:
Integrated luminosity with precision $\delta L \sim 1 \%$
Fast beam monitoring for optimisation of ep-collisions ($1 \% / \mathrm{sec}$) and control of mid-term variations of instantaneous luminosity

Need to prepare several 'alternative' methods for luminosity determination!

Requirements to physics process (visible cross sections)

fast monitoring	$(\delta L=1 \% / \mathrm{sec}$	$\rightarrow 10 \mathrm{kHz})$	$\sigma_{\text {vis }}>100 \mu \mathrm{~b}$
mid-term control	$(\delta \mathrm{L}=0.5 \% /$ hour	$\rightarrow 10 \mathrm{~Hz})$	$\sigma_{\text {vis }}>100 \mathrm{nb}$
physics normalisation	$(\delta \mathrm{L}=0.5 \% /$ week	$\rightarrow 0.1 \mathrm{~Hz})$	$\sigma_{\text {vis }}>1 \mathrm{nb}$

The studies presented in CDR consider both LR and RR options, high $Q^{2}\left(10-170^{\circ}\right)$ and low $Q^{2}\left(1-179^{\circ}\right)$ detector set-ups

Bremsstrahlung ep \rightarrow eyp

Bethe-Heitler (collinear emission):

- very high rate of 'zero angle' photons and electrons, but
- sensitive to the details of beam optics at IP
- requires precise knowledge of geometrical acceptance
- suffers from synchrotron radiation
- aperture limitation
- pile-up

QED Compton (wide angle bremsstrahlung):

- lower rate, but
- stable and well known acceptance of central detector
\rightarrow Methods are complementary, different systematics

NC DIS in (x, Q^{2}) range where F_{2} is known to $O(1 \%)$ for relative normalisation and mid-term yield control ($\sigma_{\text {vis }}{ }^{\text {DIS }} \mathrm{Q}^{2>10 \mathrm{GeV} 2} \sim 10 \mathrm{nb}$ for 10° and $\sim 150 \mathrm{nb}$ for 1° setup)
electron and photon measured in the main detector (backward calorimeter) $\sigma_{\text {vis }} \sim 3.5 n b$ (low Q^{2} setup); 0.03nb (high Q^{2} setup)
Install additional 'QEDC tagger' at $z \approx-6 m \rightarrow$ increase visible cross section for QEDC up to ~3-4 nb
\rightarrow e.g. two moveable sections approaching the beam-pipe from top and bottom (assume angular acceptance $\theta \approx 0.5 \div 1^{\circ}$)

Detector requirements:
-good position measurement, resolution,
alignment for the movable sections of QEDC tagger
-good energy resolution, linearity in 10-60 GeV range
-small amount of dead material in front (and well known/simulated)
-efficient e/ γ separation \rightarrow a small silicon tracker in front of calorimeter modules (this also allows z-vertex determination)

HERA $(H 1) \sigma_{\text {vis }} \approx 50 \mathrm{pb} ; \quad\langle L\rangle=1.5 e+31 \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \rightarrow 0.75 e-3 \mathrm{~Hz}$
LHeC $\quad \sim 2000 \mathrm{pb} ;\langle L\rangle=4.0 e+32 \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \rightarrow 0.80 \mathrm{~Hz}(1000 \times H E R A!)$
Stat.error: H1 ~ 4.50\% /month (0.8\% for full HERA2 sample) LHeC ~ 0.15\%/month

This allows much harder cuts against background \rightarrow smaller syst.error

H1(2004-2007) LHeC/month

syst.error		
experimental	1.4\%	0.8\% (improved E-scale and E-resolution)
background	1.2\%	0.4\% (harder cuts, esp. on acoplanarity)
theory	1.1\%	0.6\% (improved higher order corrections)
stat.error	0.8\%	0.2\% (bigger acceptance, Luminosity)
total error	2.3\%	1.1\%

Luminosity measurement: Bethe-Heitler (ep \rightarrow eyp)

For LR option (zero crossing angle) the photons travel along the proton beam direction and can be detected at $z \approx-120 \mathrm{~m}$, after the proton bending dipole. \rightarrow Place the photon detector in the median plane next to interacting proton beam

Main limitation - geometrical acceptance, defined by the aperture of Q1-Q3. May be need to split dipole D1 to provide escape path for photons. Geometrical acceptance of 95% is possible, total luminosity error $\delta L \approx 1 \%$. - clarify p-beamline aperture in the range $z=0-120 \mathrm{~m}$

- calculate acceptance and its variations due to beam optics;
(this is essentially HERA setup, so we can use similar detectors/methods)

Luminosity measurement: Bethe-Heitler (ep \rightarrow erp)

For RR option (1mrad crossing angle) the dominant part of photons will end up at $z \approx-22 m$, between e and p beampipes

\rightarrow very high synchrotron radiation!

Idea is to use the cooling water of SR absorber as active media for Cerenkov calorimeter: r/o two PMs:

- radiation hard
- insensitive to SR

Geometrical acceptance of $\sim 90 \%$ allows fast and reliable luminosity determination with 3 35% systematic uncertainty

detect scattered electron from Bethe-Heitler (also good for photoproduction physics and for control of γp background to DIS)
Clean sample - background from e-gas can be estimated using pilot bunches.
Three possible positions simulated \rightarrow acceptances reasonable (up to $20 \div 25 \%$)
 $62 m$ is preferable - less SR, more space. Next step- detailed calculation of acceptance and variations due to optics (beam-tilt, trajectory offset) and etagger position measurement and stability
Need a precise monitoring of beam optics and accurate position measurement of the etagger to control geometrical acceptance to a sufficient precision (e.g. $20 \mu \mathrm{~m}$ instability in the horizontal trajectory offset at IP leads to 5% systematic uncertainty in the $\sigma_{\text {vis }}$) Main experimental difficulty would be good absolute calibration and resolution (leakage over the detector boundary)

Zero Degree Calorimeter (ZDC): physics potential

Measure neutrons and photons scattered at $\sim 0^{\circ}$.

- tag pion exchange process, pion structure, absorptive /gap survival effects
- colour single exchange, diffractive scattering
- tag spectator neutron in ed scattering, distinguish spectator and scattered neutrons

- Crucial in diffractive eA, to distinguish coherent from incoherent diffraction
- Measurements for cosmic ray data analysis proton fragmentation, forward energy and particle flows...
- New forward physics phenomena
- ...

At HERA, both experiments had Forward Neutron Calorimeters (FNC) The LHC experiments- Alice, ATLAS, CMS and LHCf- have ZDC.

Acceptance for forward neutrons vs energy for LHeC ($7000 \mathrm{GeV} \times 70 \mathrm{GeV}$)

Study acceptance for neutrons vs $x_{L}=E n / E p$ and t, depending on angular range (assume neutron calorimeter at $\sim 100 \mathrm{~m}: 1 \mathrm{mrad}$ is $\pm 10 \mathrm{~cm} ; 0.1 \mathrm{mrad}$ is $\pm 1 \mathrm{~cm}$;

At HERA the FNC acceptance was limited by beam aperture to $\theta<0.75-0.8 \mathrm{mrad}$. 0.75 mrad acceptance cut at HERA corresponds to $\sim 0.1 \mathrm{mrad}$ at LHeC ! With $\sim \pm 3 \mathrm{~cm}$ we can get quite reasonable acceptance, $>90 \%$ for $x_{L}>0.3,|t|<3 \mathrm{GeV}^{2}$

Zero Degree Calorimeter

The position of ZDC in the tunnel and the overall dimensions depend mainly on the space available for installation ($\sim 90 \mathrm{~mm}$ space between two beampipes at z~ 100 m)

\rightarrow need detailed info/simulation of beam-line

One can consider also the ZDC for the measurement of spectator protons from eD or eA scattering (positioned external to proton beam as done for ALICE)

The position of ZDC in the tunnel and the overall dimensions depend mainly on the space available for installation ($\sim 90 \mathrm{~mm}$ space between two beampipes at z~ 100 m)

Zero Degree Calorimeter

. Geometric constraints- depends on the available space and angular aperture

- Requirement to the calorimeter: detect neutral particles with $\theta<0.3 \mathrm{mrad}$ and $\mathrm{E} \sim \mathrm{O}(100) \mathrm{GeV}$ to 7 TeV with a reasonable resolution of few percent
- identify $\gamma\left(\pi^{0}\right), n$; measure energy and position of n and γ with reasonable resolution; reconstruct >1 particles, evtl. reconstruct $\pi^{0} \rightarrow 2 \gamma ; \Lambda, \Delta \rightarrow n \pi^{0}$
- radiation resistant
- monitor the stability of PM gain and radiation damage (laser or LED), absolute calibration
- position sensitive: control beam position and beam spot during data taking

ZDC for the LHeC - possible solutions

- Longitudinally segmented calorimeter: $\mathrm{e} / \mathrm{m}\left(\sim 1.5 \lambda_{\mathrm{I}}\right.$, fine granularity to reconstruct impact point) and hadronic ($\sim 7-8 \lambda_{\mathrm{I}}$) sections, transverse size $\sim 3 \lambda_{\mathrm{I}}$, long. segmentation to control radiation damage

Experience from the LHC, RHIC - sampling hadron calorimeter: absorber-W plates, active media quartz fibers (W/Cerenkov detectors are fast, rad. hard, narrow visible showers)

CMS ZDC
(One can also consider THGEM as an active media O.Grachov, V.Kryshkin, et al.)

- Make use of recent developments:
e.9. Dual Readout (DREAM); Tungsten absorber with both Cerenkov and scintillators fibres, SiPM readout; γ / n separation using time structure (R.Wigmans, RD52/DREAM project report,SPSC meeting 3.4.2012)

Proton calorimeter - similar technique as for neutron detector, at about same distance from IP; can be smaller- few cm small size of spectator proton spot, but sufficient to obtain shower containment

(Richard Wigmans 3.4.2012)
SuperDREAM plans to investigate option with Tungsten, test SiPM readout on fibres

Need on-line gain monitoring, relative and absolute calibration

- Stability of the photomultiplier gain and radiation damage in fibres can be monitored using laser or LED light pulse.
-In the dual-readout approach, make readout from both sides of fibres - control of radiation damage
- Stability of absolute calibration using neutron spectra from beam-gas interaction.
- Invariant masses $\pi^{0} \rightarrow 2 \gamma, \Lambda, \Delta \rightarrow n \pi^{0}$ (Need to reconstruct several particles in ZDC within same event)
also need to care about
-Background rate (beam-gas), pileup
-How large (and how well known) is the proton beam spread and 0^{0} direction at IP ?
-Beam emittance, divergence \rightarrow main limitation for $\dagger\left(p_{T}\right)$ resolution

Forward Proton Detection

ep \rightarrow eXp' diffractive scattering
(proton survives a collision and scatters at a low angle along the beam-line)

$$
\xi \approx 1-E p^{\prime} / E p \sim 1 \%
$$

The feasibility to install forward proton detectors along the LHC beamline investigated at the ATLAS and CMS \rightarrow the results of R\&D studies are relevant for LHeC

(from ATLAS AFP Project)
Figure 3.2: Top view of one detector section: bellows (1), moving pipe (2), Si-detector pocket
(3), timing detector (4), moving BPM (5), fixed BPM (6), LVDT position measurement system
(7), emergency spring system (8).

Acceptance for forward protons at LHeC

. Scattered protons are separated in space from the nominal beam:

$$
\left(x_{\text {offset }}=D_{x} \times \xi \quad ; D_{x}-\text { energy dispersion function }\right)
$$

- Acceptance window is determined by the closest approach of proton detectors to the beam, and by the size of beam-pipe walls

Assume closest approach $12 \sigma_{\text {beam }}\left(\sigma_{\text {beam }}=250 \mu \mathrm{~m}\right.$ at 420 m$), R_{\text {beampipe }} \approx 2 \mathrm{~cm}, D_{x} \approx 1.5 \mathrm{~m}$

Good acceptance for $0.002<\xi<0.013$

Forward protons: Reconstruction of event kinematics

The event kinematics ξ and $\dagger \approx(1-\xi) E_{\text {beam }} \theta^{2}$ can be determined from the measurement of proton position and angle w.r.t. nominal beam

Chromaticity plot - Horizontal plane

Chromaticity plot - Vertical plane

Relation between position and angle w.r.t. nominal beam and the \dagger and ξ

Resolution limited due to beam divergence and width: typically 0.5% for ξ and $0.2 \mu \mathrm{rad}$ for θ.

Forward protons: alignment

Alignment of FPS - crucial: detector position with respect to the beam direction is not constant
\rightarrow need to align (and monitor) detector position for each luminosity fill

- kinematic peak method - cross section maximal for forward scattering: . use exclusive system, with well defined kinematics (e.g. ep $\rightarrow e^{\prime}+\rho+p^{\prime}, \rho$-meson reconstructed in the central tracker)
\rightarrow Need detailed studies

Forward and backward 'tunnel' detectors - important parts of the future ep (ed,eA) experiment

Ideas for the luminosity detectors, electron tagger, ZDC and FPS detectors described in the LHeC CDR

Next steps: clarify the geometrical constraints; investigate the possible design options in details

Design of detectors - challenging task !

- Use the experiences from HERA, LHC, RHIC,...
- Explore novel particle detector methods.

ZDC at the LHC detectors

H1 and ZEUS detectors for forward neutrons

ZEUS FNC+FNT

$$
\sigma_{E} / E \approx 0.63 / \sqrt{ } E \oplus 2 \%
$$

14 towers,
17×15 grid of the FNT hodoscopes,

Acceptance limited by beam apertures to $\theta<0.75-0.8 \mathrm{mrad}$, asymmetric in ϕ p_{T} resolution is dominated by p_{T} spread of proton beam ($50-100 \mathrm{MeV}$)

ZDCs are sampling Quartz-Fiber-Calorimeters (Čerenkov), with silica optical fibers, as active material, embedded in a dense absorber

The Neutron ZDC (ZN)
44 grooved W-alloy slabs ($\rho=17.6 \mathrm{~g} / \mathrm{cm}^{3}$), each of them 1.6 mm thick, stacked to form a parallelepiped $\left(7.2 \times 7.2 \times 100 \mathrm{~cm}^{3}, 8.5 \lambda_{1}\right)$

1936 quartz fibers ($\varnothing 365 \mu \mathrm{~m}$), embedded in the absorber with a pitch of 1.6 mm Energy resolution for 2.7 TeV neutrons: $\sigma / \mathrm{E} \sim 11.4 \%$

The Proton ZDC (ZP)

30 grooved brass slabs ($\rho=8.48 \mathrm{~g} / \mathrm{cm}^{3}$), each of them 4 mm thick, stacked to form a parallelepiped (22.8 x $\left.12 \times 150 \mathrm{~cm}^{3}, 8.4 \lambda_{1}\right)$

1680 quartz fibers ($\varnothing 550 \mu \mathrm{~m}$), embedded in the absorber with a pitch of 4 mm
Energy resolution for 2.7 TeV protons: $\sigma / \mathrm{E} \sim 13 \%$

(from talk R.Arnaldi)

Due to Fermi motion and Lorentz boost, the spread of the longitudinal momentum of spectators is about $500 \mathrm{GeV} \rightarrow$ Spectator protons are spread over the horizontal coordinate by the separator dipole; over ZP front face cover an area $\sim 12.6 \times 2.8 \mathrm{~cm}^{2}$

For the spectator neutrons only the transverse component of Fermi momentum plays a role in determining the size of the spot at the ZDC face, which is of the order $6 \times 6 \mathrm{~mm}^{2}$

(from talk R.Arnaldi)

Measurement of electron beam Polarisation

Based on 'Compton scattering' (as at HERA and SLC):

- γ-beam from laser scatters off the electron beam;
- scattered γ (and electron) measured in the calorimeters
- longitudinal polarisation from a fit to the scattered γ and e eneray spectra
γ and e-measurements are complementary and improve the precision
Polarisation from the scattered photons:
- the single and few scattered photons regime
.extract the polarisation from a fit to the scattered γ energy spectrum;
in situ calibration to the kinematical edge of the energy spectra;
- the multi-photon regime
extract the polarisation from an asymmetry between the average scattered energies corresponding to a circularly left and right laser beam polarisations; .negligible background but no energy calibration in situ

With a very stable pulsed laser beam, with adjustable energy and operating in different regimes, one can calibrate the calorimeter and optimise the dynamical regime to improve the uncertainty on the polarisation
Polarisation from the scattered electrons implement a dedicated electron spectrometer and a segmented electron detector to measure the electron angular distribution, related to the energy spectrum.

