# 1<sup>st</sup>-order Cost Estimates of LHeC Detector NuPEcc WS Chavannes, June 15, 2012

Max Klein/Univ. of Liverpool
Peter Kostka/DESY
Alessandro Polini/Univ. of Bologna
Markus Nordberg/CERN

#### Which Costs to Include?

Indirect

**COST** 

Direct

#### Institute

manpower, related lab infrastructure (R&D, prototyping etc.)

Non-CORE

Detector

materials, components, electronics, DAQ, computing etc..

**CORE** 

Host Lab surface buildings, access roads, C&V plants, gas/cooling lines, computing networks, communication etc.

Surrounding Cavern infrastructure, support and access structures, services, C&V, power etc.

Yes No

**CONTROL OF** 

### Basis of the Cost Estimates

- The LHeC detector cost estimates are based on the socalled CORE methodology used in the LHC Experiments
- The point of reference used here is ATLAS (CORE: 475 MCHF, final cost 540 MCHF)
- CORE items include: materials, o-scale prototyping, direct production costs, assembly & integration paid to firms... - ie. costs that Project Mgmt should be able to control
- CORE does not include: institute manpower, institute infrastructure, R&D, spares (in general), currency fluctuations, VAT, Host Lab responsibilities (not always well defined)

## **Basic Assumptions Used**

- ATLAS CORE-numbers scale linearly (downwards)
  - Total sub-system CORE = 3-4 x Sensor costs
  - Sensor costs unchanged since ATLAS construction ...
    - ... but cost updates reflected in error margins
    - ... and that granularity/#channels scale with ATLAS
      - for example: SCT strips were 25 CHF/cm2, today ~ 50% less
  - TDAQ ~ 20% of the (total) detector costs
  - Magnet (solenoid) costs follow "A. Herve's equation"
  - Infrastructure ~ 10% of the detector+magnet cost
    - Note: Infrastructure costs depend much on the overlap with Host Lab responsibilities (not always clearly defined)

## LHeC CORE (MCHF, 2011 prices)

| Sub-system |                 | R(inn) cm | R(out) cm | A (m2) | Length (m) | V (m3) | W (tn) | Power (kW) | Unit cost |          | Error (M) | Scaling-f | Total cost | Total error |
|------------|-----------------|-----------|-----------|--------|------------|--------|--------|------------|-----------|----------|-----------|-----------|------------|-------------|
|            |                 |           |           |        |            |        |        |            |           | (sensor) |           |           |            |             |
| Tracker    |                 |           |           |        |            |        |        |            |           |          |           |           |            |             |
|            | CST             |           |           | 16.2   |            |        |        |            | 0.25      | 4.1      |           | 3         | 12         | 6           |
|            | CPT             |           |           | 2.8    |            |        |        |            | 0.5       | 1.4      |           | 10        | 14         | 7           |
|            | CFT             |           |           | 3.6    |            |        |        |            | 0.25      | 0.9      |           | 3         | 3          | 1           |
|            | CBT             |           |           | 3.6    |            |        |        |            | 0.25      | 0.9      |           | 3         | 3          | 1           |
|            | FST             |           |           | 6.6    |            |        |        |            | 0.25      | 1.7      |           | 3         | 5          | 2           |
|            | BST             |           |           | 4.0    |            |        |        |            | 0.25      | 1.0      |           | 3         | 3          | 2           |
|            | Total           |           |           | 36.8   |            |        |        |            |           | 9.9      | 5.0       |           | 40         | 20          |
| Calorime   | ter             |           |           |        |            |        |        |            |           |          |           |           |            |             |
|            |                 |           |           |        |            |        |        |            |           |          |           |           |            |             |
| LAr        | EMC             |           |           |        | 6.6        | 11     | 128    |            | 0.03      | 3.8      | 0.38      | 4         | 15.3       | 1.53        |
| LAr        | FEC1/2          |           |           |        | 0.8        | 0.3    | 6      |            | 0.03      | 0.2      | 0.02      | 4         | 0.7        | 0.07        |
| LAr        | BEC1/2          |           |           |        | 0.8        | 0.3    | 3      |            | 0.03      | 0.1      | 0.01      | 4         | 0.4        | 0.04        |
| Tile       | FHC1/2/3        |           |           |        | 5.3        | 4      | 32     |            | 0.002     | 0.1      | 0.03      | 3         | 0.2        | 0.10        |
| Tile       | FHC/4/HAC/BHC/4 |           |           |        | 9.5        | 121    | 921    |            | 0.002     | 1.8      | 0.9       | 3         | 5.5        | 2.76        |
| Tile       | BHC1/2/3        |           |           |        | 5.3        | 3      | 21     |            | 0.002     | 0.0      | 0.0       | 3         | 0.1        | 0.06        |
|            | Total           |           |           |        | 10.1       | 140    | 1111   |            |           | 6.1      | 1.4       |           | 22         | 5           |
|            |                 |           |           |        |            |        |        |            |           |          |           |           |            |             |
| Muons      |                 |           | 450       | 1187   | 14         |        |        |            | 0.001     | 1.2      | 0.1       | 4         | 4.7        | 0.5         |
| Sub-total  | 1               |           |           |        |            |        |        |            |           |          |           |           | 67         | 25          |
|            |                 |           |           |        |            |        |        |            |           |          |           |           |            |             |
| TDAQ       |                 |           |           |        |            |        |        |            | 20%       |          |           |           | 13         | 1           |
| Solenoid   |                 |           |           |        |            |        |        |            |           |          |           |           | 11         | 3           |
| Cryogenio  | cs              |           |           |        |            |        |        | 2          | 1.4       |          |           |           | 3          | 1           |
| SC Quadr   | unole           |           |           |        |            |        |        |            |           |          |           |           | 1          | 0.5         |
|            |                 |           |           |        |            |        |        |            |           |          |           |           | -          | 0.5         |
| Calorime   | ter cryostat    |           |           |        |            |        |        |            |           |          |           |           |            |             |
| Sub-total  | 2               |           |           |        |            |        |        |            |           |          |           |           | 95         | 31          |
| Infrastruc | ture            |           |           |        |            |        |        |            | 10%       |          |           |           | 9          | 5           |
|            |                 |           |           |        |            |        |        |            |           |          |           |           |            |             |
| Total      |                 |           |           |        |            |        |        |            |           |          |           |           | 104        | 36          |

## Summary

- LHeC 1<sup>st</sup>-order cost estimates based on ATLAS-CORE numbers, with an error bar reflecting current costs
  - 104 +/- 36 MCHF
- It is assumed ATLAS-numbers scale downwards
- Solenoid costs follow the "A. Herve-equation"
  - ... which is also consistent with the experimental observation that magnet system ~ 25% of the total (CORE) cost