LHEC:

THE ULTIMATE FACTORIZATION MACHINE

STEFANO FORTE Università di Milano & INFN

LHEC WORKSHOP

CHAVANNES-DE-BOGIS, JUNE 15, 2012

SUMMARY

- COLLINEAR FACTORIZATION
 - THE BASICS: EW FINAL STATES
 - JETS: THE EVIDENCE
 - THE USES OF EXTENDED FACTORIZATION
- CLASSIC EXTENSIONS OF FACTORIZATION
 - SOFT GLUONS
 - HIGH ENERGY
- BEYOND THE CLASSIC EXTENSIONS
 - UNINTEGRATED AND TMD PDFS
 - DIFFRACTION & FRACTURE FUNCTIONS
- OUTLOOK

(COLLINEAR) FACTORIZATION IN QCD: THE STATEMENT

"The theorems of perturbative QCD are supported not only by proofs, but also by a combination of agreement with the results of particular calculations and agreement with experimental data"

(J.C.Collins, Foundations of Perturbative QCD, 2011)

LEPTON-HADRON

HADRON-HADRON

DIMENSIONLESS CROSS SECTIONS $\sigma(x, M^2) = \frac{1}{\tau \sigma_0} \frac{d\sigma}{dM^2}$ FACTORIZE:

LEPTOPRODUCTION $\sigma_{DIS}(x,M^2) = \int_{\tau}^{1} \frac{dz}{z} \, C_{DIS}(z,\alpha_s(M^2)) f\left(\frac{x}{z}\right); \, x = Q^2/2p \cdot q$ hadroproduction $\sigma_{DY}(\tau,M^2) = \int_{\tau}^{1} \frac{dz}{z} \, C_{DY}(z,\alpha_s(M^2)) \mathcal{L}\left(\frac{\tau}{z}\right); \, \tau = \frac{M^2}{s}$ parton luminosity: $\mathcal{L}(\tau) = \sum_{a,b} \int_{\tau}^{1} \frac{dx}{x} f_{a/h_1}(x) f_{b/h_2}(\tau/x)$ from PDFs f(z)

IN MELLIN SPACE CONVOLUTIONS \Rightarrow ORDINARY PRODUCTS $\sigma_{DY}(N,M^2) = \int_0^1 d\tau \ \tau^{N-1} \sigma(\tau,M^2) = C(N,M^2) \mathcal{L}(N);$ $\sigma_{DY}(N,M^2)/\sigma_{DIS}^2(N,M^2) = C_{DY}(N,M^2)/C_{DIS}^2(N,M^2) \ \text{PDF INDEP.}$

(COLLINEAR) FACTORIZATION IN QCD: THE STATUS

- RIGOROUSLY ESTABLISHED FOR INCLUSIVE DIS \Rightarrow WILSON EXPANSION (Gross et al., early 70's)
- FIRMLY ESTABLISHED FOR INCLUSIVE AND RAPIDITY-DIFFERENTIAL
 PRODUCTION OF ELECTROWEAK FINAL STATES (DRELL-YAN, HIGGS) ⇒
 POWER COUNTING OF INTEGRATION REGIONS (Collins, Soper, Sterman, mid 80's)
- WELL-ESTABLISHED FOR SUFFICIENTLY INCLUSIVE AND HARD COLORED FINAL STATES (HIGH p_T JETS) \Rightarrow STARTED WITH IR SAFETY (Sterman, Weinberg, mid 70's), ONGOING, WELL ESTABLISHED PHENOMENOLOGICALLY
- SEVERAL GENERALIZATIONS SOME OF WHICH WILL BE DISCUSSED BELOW

FACTORIZATION FOR JETS: THE EVIDENCE

• COMPARE PDF FIT WITH NO JET DATA (GLUON

NNPDF2.0 dataset

- TEST OF FACTORIZATION COMES FROM COMPARISON OF ELECTROPRODUCTION & **HADROPRODUCTION**
- ELECTROPRODUCTION JETS PROVIDE AN INDEPENDENT TEST

NEW PHYSICS vs FACTORIZATION I

THE TOP FORWARD-BACKWARD ASYMMETRY

- CDF MEASURES ASYMMETRY IN TOP PRODUCTION WHICH IS MUCH LARGER THAN NLO PERTURBATIVE QCD CALCULATION
- IS IT NEW PHYSICS? FIRM CONTROL OF SM & FACTORIZATION NEEDED IN ORDER TO KNOW

NEW PHYSICS vs FACTORIZATION I

THE TOP FORWARD-BACKWARD ASYMMETRY

- CDF MEASURES ASYMMETRY IN TOP PRODUCTION WHICH IS MUCH LARGER THAN NLO PERTURBATIVE QCD CALCULATION
- IS IT NEW PHYSICS? FIRM CONTROL OF SM & FACTORIZATION NEEDED IN ORDER TO KNOW
- ASYMMETRY STARTS AT NLO: SO EFFECTIVELY CALCN IS LO
- ◆ (Sterman, SEARCH workshop, 03/2012) ASYMMETRY IS MEASURED IN THE PRESENCE OF ACCEPTANCE CUTS ⇒ MAY LEAD TO LARGE LOGS WHICH NEED RESUMMATION (NOT INCLUDED IN STANDARD COLLINEAR FACTORIZATION)
- (Skands, Webber, Winter, 06/2012) ASYMMETRY IS GENERATED BY COHERENT PARTON SHOWERING (AS INCLUDED IN MC GENERATORS, NOT IN STANDARD COLLINEAR FACTORIZATION)
- OTHER STANDARD MODEL EXPLANATIONS BASED ON ELECTROWEAK CORRECTIONS

NEW PHYSICS vs FACTORIZATION II

HIGGS PRODUCTION WITH JET VETO

EXTENDING FACTORIZATION: SOFT GLUONS

- CORRECTIONS DUE TO RADIATION OF SOFT (LOW-ENERGY) GLUONS ARE (DOUBLE) LOGARITHMICALLY ENHANCED ($\alpha_s \ln^2$)
- RESUMMATION CAN BE PERFORMED TO ALL ORDERS THANKS TO FACTORIZATION OF SOFT CONTRIBUTIONS (CONTOPANAGOS, LAENEN, STERMAN, 1997) crudely speaking, xsect factorizes into function of M^2 and function of the soft scale

EXTENDING FACTORIZATION: SOFT GLUONS

HIGGS $\rightarrow \gamma \gamma$ TOTAL XSECT

- CORRECTIONS DUE TO RADIATION OF SOFT (LOW-ENERGY) GLUONS ARE (DOUBLE) LOGARITHMICALLY ENHANCED ($\alpha_s \ln^2$)
- RESUMMATION CAN BE PERFORMED TO ALL ORDERS THANKS TO FACTORIZATION OF SOFT CONTRIBUTIONS (CONTOPANAGOS, LAENEN, STERMAN, 1997) crudely speaking, xsect factorizes into function of M^2 and function of the soft scale
- IN TOTAL XSECT & RAPIDITY DISTRIBUTIONS, (THRESHOLD) RESUMMATION OF $\ln \sqrt{s} \left(1 \frac{M_X^2}{s}\right)$ CAN CORRECT SIGNIFICANTLY XSECT EVEN FAR FROM HADRONIC THRESHOLD

(Higgs WG, 2012)

EXTENDING FACTORIZATION: SOFT GLUONS

HIGGS $\rightarrow \gamma \gamma$ TOTAL XSECT

- CORRECTIONS DUE TO RADIATION OF SOFT (LOW-ENERGY) GLUONS ARE (DOUBLE) LOGARITHMICALLY ENHANCED ($\alpha_s \ln^2$)
- RESUMMATION CAN BE PERFORMED TO ALL ORDERS THANKS TO FACTORIZATION OF SOFT CONTRIBUTIONS (CONTOPANAGOS, LAENEN, STERMAN, 1997) crudely speaking, xsect factorizes into function of M^2 and function of the soft scale
- IN TOTAL XSECT & RAPIDITY DISTRIBUTIONS, (THRESHOLD) RESUMMATION OF $\ln \sqrt{s} \left(1 \frac{M_X^2}{s}\right)$ CAN CORRECT SIGNIFICANTLY XSECT EVEN FAR FROM HADRONIC THRESHOLD
- IN p_t DISTRIBUTIONS, RESUMMATION OF $\ln p_T$ NECESSARY TO GET CORRECT SHAPE IN MEDIUM-SMALL p_T REGION

(Higgs WG, 2012) RESUMMED VS UNRESUMMED HIGGS $\rightarrow \gamma \gamma \ p_t$ SPECTRUM

(de Florian, Ferrera, Grazzini, Tommasini, 2012)

SOFT GLUONS: THE ROLE OF PDFS

- IN RESUMMED CALCULATION, MUST USE RESUMMED PDFs!
- CAN ESTIMATE THE EFFECT OF RESUMMATION BY DETERMINING THE DOMINANT N-SPACE REGION FOR GIVEN x, Q^2 , & COMPUTE RESUMMED/UNRESUMMED PARTONIC CROSS SECTION RATIO
- EFFECT OF RESUMMATION FOR PRO-DUCTION OF 1 TeV FINAL STATES AT THE PERCENT LEVEL (LARGER FOR GLUON CHANNELS)
- NEED PRECISE DATA IN LARGE x REGION TO DETERMINE PDFS ACCURATELY IN RESUMMATION REGION

IMPACT OF RESUMMATION ON u QUARK VS N

(Corcella, Magnea, 2005)

EXTENDING FACTORIZATION: HIGH ENERGY

- HIGH-ENERGY GLUON RADIATION IS ENHANCED BY $\ln \frac{s}{M^2}$
- HIGH-ENERGY FACTORIZATION $\sigma_{DIS}(x,M^2) = \int d^2\vec{k}_T \int_{\tau}^1 \frac{dz}{z} \, C_{DIS}(\frac{x}{z},\frac{|\vec{k}_T|^2}{M^2},\alpha_s(M^2)) f\left(z,\vec{k}_T\right)$ HOLDS AT LL LEVEL FOR TOTAL CROSS SECTION $\Rightarrow \text{ USUAL COLLINEAR PDFS, BUT ANOMALOUS DI-MENSION AND COEFFICIENT FUNCTION RESUMMED TO ALL ORDERS (Catani, Ciafaloni, Hautmann, 1990)}$
- RESUMMED ANOMALOUS DIMENSIONS KNOWN TO LLX (Jaroszewicz 1982 from BFKL 1975) AND NLLX (Fadin-Lipatov 1998)
- EXTENDED TO RAPIDITY DISTRIBUTIONS (Caola, SF, Marzani, 2011)
- RESUMMED COEFFICIENT FUNCTIONS KNOWN FOR HQ PHOTO-, ELECTRO- (1990) AND HADRO-PRODUCTION (2001); DIS (1994); DRELL-YAN (2009); HIGGS INCLUSIVE (1008) AND RAPIDITY DISTN (2011)

EXTENDING FACTORIZATION: HIGH ENERGY

- HIGH-ENERGY GLUON RADIATION IS ENHANCED BY $\ln \frac{s}{M^2}$
- HIGH-ENERGY FACTORIZATION $\sigma_{DIS}(x, M^2) = \int d^2\vec{k}_T \int_{\tau}^1 \frac{dz}{z} C_{DIS}(\frac{x}{z}, \frac{|\vec{k}_T|^2}{M^2}, \alpha_s(M^2)) f$ (HOLDS AT LL LEVEL FOR TOTAL CROSS SECTION \Rightarrow USUAL COLLINEAR PDFS, BUT ANOMALOUS DIMENSION AND COEFFICIENT FUNCTION RESUMMED TO ALL ORDERS (Catani, Ciafaloni, Hautmann, 1990)
- RESUMMED ANOMALOUS DIMENSIONS KNOWN TO LLX (Jaroszewicz 1982 from BFKL 1975) AND NLLX (Fadin-Lipatov 1998)
- EXTENDED TO RAPIDITY DISTRIBUTIONS (Caola, SF, Marzani, 2011)
- RESUMMED COEFFICIENT FUNCTIONS KNOWN FOR HQ PHOTO-, ELECTRO- (1990) AND HADRO- 0.06 PRODUCTION (2001); DIS (1994); DRELL-YAN (2009); HIGGS INCLUSIVE (1008) AND RAPIDITY DISTN (2011)
- COMBINED WITH STANDARD COLLINEAR FACTORIZATION (Ciafaloni, Colferai, Salam, Stasto, 2004 $n_f=0$; Altarelli, Ball, SF, 2006 also with quarks)

HIGH ENERGY: IMPACT AND EVIDENCE

- ullet SOME EVIDENCE OF SMALL x CORRECTIONS COMES FROM PDF FITS: NNPDF AND HERAPDF OBSERVE DETERIORATION OF FIT QUALITY
- RESUMMED PDFS + RESUMMED PREDICTIONS NEEDED FOR PRECISION PHYSICS AT EDGES OF PHASE SPACE & LOW MASS FINAL STATES

QUALITY OF PDF FIT VS x

HIGH ENERGY: IMPACT AND EVIDENCE

- ullet SOME EVIDENCE OF SMALL x CORRECTIONS COMES FROM PDF FITS: NNPDF AND HERAPDF OBSERVE DETERIORATION OF FIT QUALITY
- RESUMMED PDFS + RESUMMED PREDICTIONS NEEDED FOR PRECISION PHYSICS AT EDGES OF PHASE SPACE & LOW MASS FINAL STATES
- LOW-MASS DRELL-YAN: LARGE CORRECTIONS & UNSTABLE PERTURBATIVE EXPANSION

HIGH ENERGY: IMPACT AND EVIDENCE

- ullet SOME EVIDENCE OF SMALL x CORRECTIONS COMES FROM PDF FITS: NNPDF AND HERAPDF OBSERVE DETERIORATION OF FIT QUALITY
- RESUMMED PDFS + RESUMMED PREDICTIONS NEEDED FOR PRECISION PHYSICS AT EDGES OF PHASE SPACE & LOW MASS FINAL STATES
- LOW-MASS DRELL-YAN: LARGE CORRECTIONS & UNSTABLE PERTURBATIVE EXPANSION
- LHCB DATA SEEM TO AGREE WITH NLO! MORE THEORETICAL/EXPERIMENTAL UNDERSTANDING NEEDED!

UNINTEGRATED AND TMD PDFS

- INTERPRET HIGH-ENERGY FACTORIZATION $\sigma_{DIS}(x,M^2) = \int d^2\vec{k}_T \int_{\tau}^1 \frac{dz}{z} \, C_{DIS}(\frac{x}{z},\frac{|\vec{k}_T|^2}{M^2},\alpha_s(M^2)) f\left(z,\vec{k}_T\right)$ AS A k_T FACTORIZATION & ASSUME IT TO BE MORE GENERALLY VALID
- PDFs become k_T dependent (TMD)

UNINTEGRATED AND TMD PDFS

FORWARD JETS:

 k_t -FACT VS COLLINEAR

(Deak, Hautmann, Jung, Kutak, 2010)

 $Z\bar{b}b$: k_t -FACT VS COLLINEAR

(Deak, Schwennsen, 2010)

- INTERPRET HIGH-ENERGY FACTORIZATION $\sigma_{DIS}(x,M^2) = \int d^2\vec{k}_T \int_{\tau}^1 \frac{dz}{z} \, C_{DIS}(\frac{x}{z},\frac{|\vec{k}_T|^2}{M^2},\alpha_s(M^2)) f\left(z,\vec{k}_T\right)$ AS A k_T FACTORIZATION & ASSUME IT TO BE MORE GENERALLY VALID
- PDFs become k_T dependent (TMD)
- k_T -DEP PDF CAN BE USED FOR PARTON SHOWER-ING (COLLINS, HAUTMANN, 2000)
- IMPLEMENTED IN MONTE CARLO GENERATORS (CASCADE, H.Jung)
- SIGNIFICANT IMPLICATIONS FOR LHC OBSERVABLES & SEARCHES

UNINTEGRATED AND TMD PDFS

FORWARD JETS:

 k_t -FACT VS COLLINEAR

(Deak, Hautmann, Jung, Kutak, 2010)

 $Z\bar{b}b$: k_t -FACT VS COLLINEAR

(Deak, Schwennsen, 2010)

- INTERPRET HIGH-ENERGY FACTORIZATION $\sigma_{DIS}(x,M^2) = \int d^2\vec{k}_T \int_{\tau}^1 \frac{dz}{z} \, C_{DIS}(\frac{x}{z},\frac{|\vec{k}_T|^2}{M^2},\alpha_s(M^2)) f\left(z,\vec{k}_T\right)$ AS A k_T FACTORIZATION & ASSUME IT TO BE MORE GENERALLY VALID
- PDFs become k_T dependent (TMD)
- k_T -DEP PDF CAN BE USED FOR PARTON SHOWER-ING (COLLINS, HAUTMANN, 2000)
- IMPLEMENTED IN MONTE CARLO GENERATORS (CASCADE, H.Jung)
- SIGNIFICANT IMPLICATIONS FOR LHC OBSERVABLES & SEARCHES
- TMD FACTORIZATION BROKEN FOR HIGH p_T JETS (Mulders, Rogers, 2010)
- FACTORIZATION MUST BE ESTABLISHED BY COM-PARING ELECTRO- AND HADROPRODUCTION

DIFFRACTION AND FRACTURE FUNCTIONS

DIFFRACTIVE PDFS AT HERA

HERA inclusive diffraction

(Newman, Ruspa, HERALHC Whsop 2009)

• FACTORIZATION CAN BE PROVEN FOR DIFFRACTIVE DIS (Collins, 1997; Grazzini, Trentadue, Veneziano, 1997):

$$\sigma_{DIS}^{diff}(x,M^2;x_p,t) = \int_{\tau}^{1} \frac{dz}{z} \, C_{DIS}^{diff}(\frac{x}{z},\alpha_s(M^2)) f\left(z,\vec{k}_T;x_P,t\right)$$
 where $f(x,Q^2;x_P,t)$ is a diffractive PDF, or fracture function, dep. on the longitudinal and transverse (x_P,t) momentum transferred to the intact target

- SUCCESFULLY APPLIED AT HERA, WHERE DIFFRACTION IS A SIZABLE PART OF THE CROSS SECTION
- EXPECTED TO FAIL IN HADROPRODUCTION, AND INDEED PHENOMENOLOGICALLY NOT VIABLE FOR DIFFRACTIVE JET PRODUCTION (Collins, 2001)

DIFFRACTION AND FRACTURE FUNCTIONS

DIFFRACTIVE PDFS AT HERA

HERA inclusive diffraction

(Newman, Ruspa, HERALHC Whsop 2009)

DIFFRACTIVE HIGGS PRODUCTION

• FACTORIZATION CAN BE PROVEN FOR DIFFRACTIVE DIS (Collins, 1997; Grazzini, Trentadue, Veneziano, 1997):

$$\sigma_{DIS}^{diff}(x,M^2;x_p,t) = \int_{\tau}^{1} \frac{dz}{z} \, C_{DIS}^{diff}(\frac{x}{z},\alpha_s(M^2)) f\left(z,\vec{k}_T;x_P,t\right)$$
 where $f(x,Q^2;x_P,t)$ is a diffractive PDF, or fracture function, dep. on the longitudinal and transverse (x_P,t) momentum

• SUCCESFULLY APPLIED AT HERA, WHERE DIFFRACTION IS A SIZABLE PART OF THE CROSS SECTION

TRANSFERRED TO THE INTACT TARGET

- EXPECTED TO FAIL IN HADROPRODUCTION, AND INDEED PHENOMENOLOGICALLY NOT VIABLE FOR DIFFRACTIVE JET PRODUCTION (Collins, 2001)
- HOWEVER, DIFFRACTIVE PRODUCTION OF HIGGS (& BSM PARTICLES) SUGGESTED BECAUSE OF ITS CLEAN SIGNAL (Khoze, Martin, Ryskin)

THE ROAD AHEAD

- SOLID CONTROL OF FACTORIZATION IS A NECESSARY INGREDIENT FOR PRECISION DISCOVERY PHYSICS
- FACTORIZATION, BEYOND THE SIMPLEST CASES, IS ESTABILSHED BY AN INTERPLAY OF THEORY AND PHENOMENOLOGY
- THE CAPABILITY OF TESTING FACTORIZATION IN ELECTROPRODUCTION ALLOWS FOR DETAILED QCD STUDIES AND ENABLES NEW DISCOVERY CHANNELS AT THE LHC