

Prospects for $H \rightarrow b\overline{b}$ measurement with LHeC

Masaki Ishitsuka

on behalf of
M. Ishitsuka, K. Kimura, M. Kuze
Tokyo Institute of Technology
C. Hengler, U. Klein
University of Liverpool

Higgs at LHC

- Constraint to SM Higgs within 117.5 127.5 GeV
 - ATLAS and CMS with ~5 fb⁻¹ data at $\sqrt{s} = 7$ TeV
- LHC has discovery potential to the mass range with 2012 data

Higgs at LHeC

- Constraint to SM Higgs within 117.5 127.5 GeV
 - ATLAS and CMS with ~5 fb⁻¹ data at \sqrt{s} = 7TeV
- LHC has discovery potential to the mass range with 2012 data
- Following discovery, LHeC aims to measure Hbb coupling
 - Branching ratio to bb pair: 52 67% at 117.5 127.5 GeV
 - $H\rightarrow b\overline{b}$ is still challenging channel with large QCD background
 - Measurement of Higgs to fermion coupling is essential to confirm Higgs field is accounting for fermion mass via Yukawa couplings
 - It is important to show that it is a SM Higgs (see CP study talk)
 - H→bb may be observed in exclusive production mode in clean environment

Higgs at LHeC

CC Higgs production cross-section $(M_H = 120 \text{ GeV})$

σ **(fb)**

Electron	50	100	150
beam energy	GeV	GeV	GeV
cross-section (fb)	81	165	239

Higgs production cross-section at $\sqrt{s} = 1.98 \text{TeV}$ ($E_e = 140 \text{GeV}$, $E_p = 7 \text{TeV}$)

Higgs at LHeC

Kinematic distributions of generated Higgs (m_H =120GeV, E_e =150GeV, E_p =7TeV)

Higgs at LHeC

Signal

CC: $H \rightarrow b\overline{b}$ (BR ~ 0.7 at M_H=120GeV)

NOTE: numbers are after \ pre-selection in generator

Background (examples)

CC: 3 jets (~57pb)

CC: Z production (~0.11pb)

CC: single top production (~4.1pb)

NC: b pair production (~1.1nb)

LHeC in simulation

Event generation

- SM Higgs production
- CC & NC background

by MadGraph/MadEvent

- Fragmentation
- Hadronization

by PHYTHIA (+ mod. for ep)

Fast detector simulation

by PGS

 $H \rightarrow b\overline{b}$ selection

- Calculate cross-section with tree-level Feynman diagrams
- Generate final state of outgoing particles

Input parameters:

- 150 GeV electron beam
- 7 TeV proton beam
- 120 GeV SM Higgs boson mass
- + 60 GeV configuration as comparison

Generator level cuts

- $p_T > 5GeV$ (for parton besides b)
- | *η* | < 5.0
- For NC: Number of b quarks

 2
 (NOTE: according to simulation study with artificially increased b-tag mis-ID, essentially all NC BG after selection are due to events with two true b quarks)

LHeC in simulation

Event generation

- SM Higgs production
- CC & NC background

by MadGraph/MadEvent

- Fragmentation
- Hadronization

by PHYTHIA (+ mod. for ep)

Fast detector simulation

by PGS

 $H \rightarrow b\overline{b}$ selection

- Generic detector with
 - Coverage:
 - Tracking: $|\eta| < 3$
 - Calorimeter: $|\eta| < 5$
 - Calorimeter resolution
 - EM: 1% ⊕ 5%/√E
 - Hadron: $60\%/\sqrt{E}$
 - Cell size: $(\Delta \eta, \Delta \phi) = (0.03, 0.03)$
 - Jet reconstructed by cone algorithm (\triangle R=0.7)
 - b-tag performance
 - Flat efficiency for $|\eta| < 3$
 - Efficiency/mis-ID
 - b-jet: 60%
 - c-jet: 10%
 - Other jets: 1%

+ ~ .

Selection of H→bb

■ NC rejection

- Exclude electron-tagged events
- $E_{T,miss} > 20GeV$
- ightharpoonup N_{jet} ($p_{\text{T}} > 20 \text{GeV}$) ≥ 3
- \blacksquare E_{T.total} > 100GeV
- $y_{IB} < 0.9, Q_{IB}^2 > 400 GeV$

■ b-tag requirement

$$ightharpoonup$$
 $m N_{b-jet}~(p_T > 20GeV) \ge 2$

- Higgs invariant mass
 - 90 < M_H < 120GeV
- Single top rejection
 - \blacksquare M_{jjj,top} > 250GeV
 - M_{jj,W} > 130GeV
- Forward jet tagging
 - \blacksquare $\eta_{\text{jet}} > 2$ (lowest η excluding b-tagged

Selection of H→bb

- NC rejection
 - Exclude electron-tagged events
 - $E_{T,miss} > 20GeV$
 - ightharpoonup N_{iet} ($p_T > 20 GeV$) ≥ 3
 - \blacksquare E_{T.total} > 100GeV
 - $y_{IB} < 0.9, Q_{IB}^2 > 400 GeV$
- b-tag requirement
 - ightharpoonup $m N_{b-iet}$ (p_T > 20GeV) \geq 2
- Higgs invariant mass
 - \blacksquare 90 < M_{H} < 120GeV
- Single top rejection
 - \blacksquare M_{jjj,top} > 250GeV
 - M_{ii,W} > 130GeV
- Forward jet tagging
 - $\eta_{\rm jet} > 2$ (lowest η excluding b-tagged jets)

for $|\eta| < 3$ b-jet identification: $\varepsilon = 60\%$ c-jet mis-ID: $\varepsilon = 10\%$ Other jet mis-ID: $\varepsilon = 1\%$

Selection of H→bb

- NC rejection
 - Exclude electron-tagged events
 - $E_{T,miss} > 20GeV$
 - ightharpoonup N_{jet} ($p_{\text{T}} > 20 \text{GeV}$) ≥ 3
 - \blacksquare E_{T,total} > 100GeV
 - $y_{IB} < 0.9, Q_{IB}^2 > 400 GeV$
- b-tag requirement
 - ightharpoonup $m N_{b-jet}$ (p_T > 20GeV) \geq 2
- Higgs invariant mass
 - 90 < M_H < 120GeV
- Single top rejection
 - \blacksquare M_{jjj,top} > 250GeV
 - M_{jj,W} > 130GeV
- Forward jet tagging
 - $\eta_{\text{jet}} > 2$ (lowest η excluding b-tagged jets)

⇒ 44% of remaining BG is single-top...

Selection of H→bb

- NC rejection
 - Exclude electron-tagged events
 - $E_{T,miss} > 20GeV$
 - ightharpoonup N_{jet} ($p_{\text{T}} > 20 \text{GeV}$) ≥ 3
 - \blacksquare E_{T,total} > 100GeV
 - $y_{IB} < 0.9, Q_{IB}^2 > 400 GeV$
- b-tag requirement
 - ightharpoonup $m N_{b-jet}~(p_T > 20GeV) \ge 2$
- Higgs invariant mass
 - 90 < M_H < 120GeV
- Single top rejection
 - M_{iji,top} > 250GeV
 - M_{jj,W} > 130GeV
- Forward jet tagging
 - $\eta_{\rm jet}$ > 2 (lowest η excluding b-tagged jets)

Selection of H→bb

- NC rejection
 - Exclude electron-tagged events
 - $E_{T,miss} > 20 GeV$
 - ightharpoonup N_{jet} ($p_{\text{T}} > 20 \text{GeV}$) ≥ 3
 - $E_{T,total} > 100 GeV$
 - $y_{IB} < 0.9, Q_{IB}^2 > 400 GeV$
- b-tag requirement
 - ightharpoonup $m N_{b-jet}~(p_T > 20GeV) \ge 2$
- Higgs invariant mass
 - 90 < M_H < 120GeV
- Single top rejection
 - M_{jjj,top} > 250GeV
 - M_{jj,W} > 130GeV
- Forward jet tagging
 - $\eta_{\rm jet}$ > 2 (lowest η excluding b-tagged jets)

Selection of H→bb

- NC rejection
 - Exclude electron-tagged events
 - $E_{T,miss} > 20 GeV$
 - ightharpoonup N_{jet} ($p_{\text{T}} > 20 \text{GeV}$) ≥ 3
 - $E_{T,total} > 100 GeV$
 - $y_{IB} < 0.9, Q_{IB}^2 > 400 GeV$
- b-tag requirement
 - ightharpoonup $m N_{b-jet}~(p_T > 20GeV) \ge 2$
- Higgs invariant mass
 - 90 < M_H < 120GeV
- Single top rejection
 - M_{jjj,top} > 250GeV
 - M_{ii.W} > 130GeV
- Forward jet tagging
 - $\eta_{\text{jet}} > 2$ (lowest η excluding b-tagged jets)

Coordinate: z-axis along proton beam

H→bb

CC BG

NC BG

Selection of H→bb

- NC rejection
 - Exclude electron-tagged events
 - $E_{T,miss} > 20GeV$
 - ightharpoonup N_{jet} ($p_{\text{T}} > 20 \text{GeV}$) ≥ 3
 - $E_{T,total} > 100 GeV$
 - $y_{IB} < 0.9, Q_{IB}^2 > 400 GeV$
- b-tag requirement
 - ightharpoonup $m N_{b-jet}~(p_T > 20GeV) \ge 2$
- Higgs invariant mass
 - 90 < M_H < 120GeV
- Single top rejection
 - M_{jjj,top} > 250GeV
 - M_{jj,W} > 130GeV
- Forward jet tagging
 - $\eta_{\text{jet}} > 2$ (lowest η excluding b-tagged jets)

Higgs invariant mass after all selection

+ Results

■ Beam energy:

■ Electron beam 150 GeV

Proton beam
7 TeV

■ SM Higgs mass 120 GeV

■ Luminosity 10 fb⁻¹

Signal and background cut flow

	H→pp	CC DIS	NC bbj	S/N	s/√n
NC rejection	816	123000	4630	6.38×10 ⁻³	2.28
+ b-tag requirement + Higgs invariant mass	178	1620	179	9.92×10 ⁻²	4.21
All cuts	84.6	29.1	18.3	1.79	12.3

Comparison with 60GeV option

■ Beam energy:

■ Electron beam $150 \text{ GeV} \Rightarrow 60 \text{ GeV}$

Proton beam 7 TeV

■ SM Higgs mass 120 GeV

■ Luminosity $10 \text{ fb}^{-1} \Rightarrow 100 \text{ fb}^{-1}$

	$E_{\rm e} = 150 \; { m GeV}$ (10 fb ⁻¹)	$E_{\rm e} = 60 \; {\rm GeV}$ (100 fb ⁻¹)
$\mathbf{H} ightarrow \mathbf{bb}$ signal	84.6	248
S/N	1.79	1.05
S/√N	12.3	16.1

- Once the discovery of SM Higgs is made by LHC, next goal is to establish Higgs field as origin of fermion mass
 - ⇒ Measurement of Hbb coupling is essential
- Sensitivity to $H \rightarrow b\overline{b}$ was estimated by simulation study of LHeC
- LHeC has potential to measure $H \rightarrow b\overline{b}$
 - 150 GeV electron beam with 10 fb⁻¹
 - 85 signal events expected with S/N ~ 1.8, S/ \sqrt{N} ~ 12.3
 - 60 GeV electron beam with 100 fb⁻¹
 - 248 signal events expected with S/N ~ 1.1, S/ \sqrt{N} ~ 16.1
- We can explore other channels
 - NC Higgs production in ZZ fusion
 - Other light Higgs decay channels

+ backup

LHeC in simulation

Event generation

- SM Higgs production
- CC & NC background

by MadGraph/MadEvent

References:

J. Alwall et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028, arXiv:0706.2334 [hep-ph]12105

- Fragmentation
- Hadronization

by PHYTHIA (+ mod. for ep)

T. Sjostrand, S. Mrenna, and P. Z. Skands, PYTHIA 6.4 Physics Manual , JHEP 05 (2006) 026, arXiv:hep-ph/0603175

Fast detector simulation

by PGS

PGS. http://www.physics.ucdavis.edu/~conway/research/software/pgs/pgs4- general.htm

 $H \rightarrow b\overline{b}$ selection