Positrons - e*p Physics with the LHeC

Ring: same e*p intensities, Linac: inferior positron intensity [cf talk of H.Braun]
(Why) does the LHeC physics programme require positrons — which intensity?
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LHeC Physics -1
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Grand unification? o, to per mille accuracy: jets vs inclusive
ultraprecision DIS programme: NXLO, charm, beauty, ep/eD,..

A new phase of hadronic matter: high densities, small a,
saturation of the gluon density? BFKL-Planck scale
superhigh-energy neutrino physics (p-N)

Partons in nuclei (4 orders of magnitude extension)
saturation in eA (AY/3?), nuclear parton distributions
black body limit of F,, colour transparency, ...

Novel QCD phenomena
instantons, odderons, hidden colour, sea=antiquarks (strange)

Complementarity to new physics at the LHC
LQ spectroscopy, eeqq Cl, Higgs, e”

Complete unfolding of partonic content of the proton,
direct and in QCD




LHeC Physics - 2

1. Neutron structure free of Fermi motion

2. Diffraction — Shadowing (Glauber). Antishadowing

3. Vector Mesons to probe strong interactions

4. Diffractive scattering “in extreme domains” (Brodsky)
5. Single top and anti-top ‘factory’ (CC)

6. Gluon density over 6 orders of magnitude in x

7. GPDs via DVCS

8. Unintegrated parton distributions

9. Partonic structure of the photon

10.Electroweak Couplings to per cent accuracy

Every major step in energy can lead to new unexpected results, ep: SLAC, HERA

Requires: High energy, e*, p, d, A, high luminosity, 4mt acceptance, high precision (e/h)
L TeV scale physics, electroweak, top, Higgs, low x unitarity



Leptoquark Sensitivity

1(?s:alar LQ, 1=0.1, single production
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E6 new fields

TC bound states of technifermions
PS 4th colour of quarks

l,q composite models

The cross section in ep is (depending on couplings)
100 times higher than in pp, single production,
but LHC is there, has pair production

and higher energy

LHeC has mass reach up to about the
cms energy (M <sqrt(s) =1.3.. 2 TeV
for 60 .. 140 GeV electron beam energy)

—IF LQs are discovered at the LHC the
electron beam energy would possibly
be adjusted

—>The role of ep would be primarily to
determine the LQ quantum numbers



Leptoquark Quantum Numbers

Asymmetry
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Fermion number (F') Since the parton densities for u and d at high z are much larger than
those for # and d, the production cross section at LHeC of an F = 0 (F = 2) LQ is much larger
in e*p (e p) than in e p (e*p) collisions. A measurement of the asymmetry between the e*p
and e~ p LQ cross sections thus determines the fermion number of the produced leptoquark.




Contact Interactions

Cl:

New interaction interfering

G/ ogy

with the SM at some coupling:
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Figure 6.4: (top) Example deviations of the e~ p DIS cross-section at LHeC, in the presence

of an eeqq CI. The ratio of the “measured” to the SM cross-sections, r = ¢/osm, is shown.
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e Trie) between e*p and e~ p measurements of o /ospr.
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Higgs Physics
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CDR: H = bb analysis: 400 events
for 100 fb! at 60 GeV ep polarised
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More channels can be studied (WW, t).

CC production in e larger than e*

i‘,

Want highest electron rate: Strong desire
from Higgs boson (if it exists) for
L =10%**cm2s! and long operation

No evident demand for e* from Higgs. ??
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'I?p and Top Production in Charged Currents

Charged currents are flavour sensitive: beam charge selects up and down and (anti)-quarks

CC rates at LHeC CC rates at LHeC
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Not measured before. Similar: strange and anti-strange quark densities
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Weak Currents - Valence Quarks (d,, low x)

HERAPDF1.0 settings, Q2=1.9 GeVz, Experimental Uncert.
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The valence quarks are still not well known,
because of nuclear and non-pert. corrections.

Uncertain are particularly the d-valence and
the low x region, which are important for LHC
discovery and precision physics (M)

The LHeC needs positrons for both d, at high x
(from CC scattering at high luminosity, 10fb)
and for a measurement of 2u,+d, at low x
(from the NC charge asymmetry with few fb?)
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Weak Neutral Currents — Polarisation Asymmetry
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Can measure running of the weak mixing
angle to high precision with polarised e".
An example for electroweak physics w/o e*.




Generalised Parton Distributions
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Figure 7.27: Simulated LHeC measurement of the DVCS cross section multiplied by Q* for
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uncertainties are considered.
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Saturation of the gluon density - F,

Linear approaches B, i
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Figure 7.12: Predictions from different models for Fy(z, Q% = 10 GCVQ) (plot on the left) and
Fr(z,Q% = 10 GeV?) (plot on the right) versus z, together with the corresponding pseudodata.

High precision measurements of both F, and F, are required to discover the saturation of xg at low x,
and establish a new theory for non-linear parton evolution (replacing the DGLAP equations)

Precision for F, requires to reach highest values of inelasticity y = 1- E'/E, i.e. small E’

In order to cope with the background from hadrons (which is about charge symmetric unlike DIS)
one needs to take data (O(100)pb-t) with electrons and positrons of similar luminosity.

This measurement is also crucial in eA where the running times will be much shorter than in ep
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Considerations

Beyond the SM: The LHC is the search+discovery machine (and hopefully successful).
The LHeC delivers high precision and selectivity by the control of the initial state.
Higgs with the LHeC demands maximum electron-proton luminosity.

The + charged current reaction is sensitive to quark flavours and to particle/antiparticles,
it selects top vs anti-top and strange vs anti-strange, for example. As a weak interaction
it is sizeable only at high Q2 and thus requires high luminosity.

The weak neutral current depends on the charge and the polarisation. Important
electroweak measurements can be done with polarised electrons (F,"), e.g. sin@.

The full potential requires yet positrons too (xF,¥%), e.g. light quarks.

At low Q2 DVCS and F (also in eA) require high luminosity for electrons and positrons.

—>There is a strong demand from physics to maximize the positron luminosity too
(with probably less emphasis to the e* beam polarisation which is yet another complication)
- A setup with 100 fb-1 electrons and 1 fb-1 positrons is tolerable but requires L+ = O( L-/10)

If the positron luminosity was much lower than for electrons, one would be tempted not to “waste” running time
on positrons and thus the integrated luminosity came out to be even lower, relatively to electrons




