AA-pA-eA complementarity [also some ep complementarity]

Carlos A. Salgado
Universidade de Santiago de Compostela and CERN

2012 CERN-ECFA-NuPECC Workshop on the LHeC Chavannes-de-Bogis, Switzerland - June 2012
carlos.salgado@usc.es
http://cern.ch/csalgado

PHENIX

$\eta=1$
2m

Workshop on the LHeC - June 2012
AA-pA-eA complementarity 2

New lepton-proton/nucleus colliders being planned

European Organization for Nuclear Research

LHC and RHIC experiment upgrades will precede the (eventual) operation of LHeC and/or EIC - Complementarity

Kinematical reach in nuclear collisions

Proton-nucleus at the LHC

Feasibility checks performed - estimate Iuminosity
$\boldsymbol{L}=\boldsymbol{I} \mathbf{0}^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ (full energy) [Integrated in $10^{6} \mathrm{~s}: \mathbf{L}=100 \mathrm{nb}{ }^{-1}$]
LHC two-in-one magnet

- Equal rigidity :: $p_{\mathrm{Pb}}=Z p_{\text {proton }}$
- Center of mass shifted in rapidity $\Delta y=0.46$
- Top LHC energy for pPb: 8.8 TeV

Unequal revolution freq. at injection and ramp
First pPb run scheduled in 2012 - max. energy 57eV

- A new physics system just before the 20/3-2014 shutdown
- Estimated integrated luminosity $L=20 \mathrm{nb}^{-I}$

Why proton-nucleus?

[To study the structure of a large object make collisions with smaller objects (Rutherford experiment...)]

The proton structure is constrained by DIS + other data

- HERA data of utmost importance

Need pA to study the high-energy nuclear structure

- DIS data is old (90's) short number and with limited range
- pA@LHC is the only experimental condition available before an
eventual lepton-A collider (LHeC, eRHIC?)
- Needed as benchmark for the AA program
- High-density effects (saturation) enhanced in nuclei

Low-x Physics with electrons, protons and nuclei

One of the basic questions:

Low-x Physics with electrons, protons and nuclei

One of the basic questions:

DGLAP or not DGLAP

- Saturation of partonic densities
- Resummation
- Signs of BFKL
- Violations of DGLAP expected to be larger in nuclei
[For hot QCD studies this is an essential question: Initial state of the system]

Some historical perspective

Global DGLAP fits work
Essential for the phenomenology
シ In particular LHC

Some historical perspective

ZEUS

Global DGLAP fits work

Essential for the phenomenology
In In particular LHC

Also for nuclei [talk by P. Zurita]

- Reduced amount of data

Workshop on the LHeC - June 2012
AA-pA-eA complementarity 8

Geometric scaling as a qualitative signature

[Stasto, Golec-Biernat, Kwiecinski 200 I;
Armesto, Salgado,Wiedemann 2004]

Energy and centrality dependences fixed by lepton-nucleus data

Combined HERA data: unprecedented precision

[CT10 arXiv:1007.2241[hep-ph]]

[NNPDF arXiv:1107.2652 [hep-ph]]

Still, uncertainties large at small-x

Non-linear BK equations also fit small-x

nPDFs: global analyses. Status

Main goals

- Check the factorization of nPDFs for hard processes
- Fix the benchmark for HI hot matter or saturation

EKS98 [Eskola, Kolhinen, Ruuskanen, Salgado 1998]
HKM [Hirai, Kumano, Miyama, 200I] nDS [de Florian, Sassot, 2003]

HKN [Hirai, Kumano, Nagai, 2004; 2007]
EPS08, EPS09 [Eskola, Paukkunen, Salgado, 2008; 2009]
nCTEQ [Kovarik et al, 20II]
DSSZ [de Florian, Sassot, Stratmann, Zurita, 20II]

Included data

[EPS09]

DIS: (484 points) SLAC-E-I39
NMC 95, $95 r e, 96$ + EMC
- leave E665 out

DY in p+A (92 points)

E772 \& E866

RHIC inclusive dAu

 (5 I points)PHENIX/STAR: midrapidity BRAHMS: forward Include only $p_{T}>2 \mathrm{GeV}$

Workshop on the LHeC - June 2012

Experiment	Process	Nuclei	Data poimts	χ^{2}	Weght	Ref.
SLAC E-139	DIS	He (4)/D	18	2.0	1	25
NMC 96, reanalysis	DIS	He / D	16	12.1	1	26
NMC 55	DIS	Li(6)/D	15	30.7	1	[27]
SLAC E-139	DIS	$\mathrm{Be}(9) / \mathrm{D}$	17	5.5	1	25
NMC 96	DIS	$\mathrm{Be}(9) / \mathrm{C}$	15	4.2	1	28
SLAC E-139	DIS	$\mathrm{C}(12) / \mathrm{D}$	7	3.5	1	25
NMC 85	DIS	C/D	15	10.5	5	27
NMC 96, reanalysis	DIS	C/D	16	17.8	8	${ }^{26}$
NMC 96, reanalysis	DIS	C/LL	20	36.4	1	[26]
FNAL-ETT2	DY	C/D	9	8.9	10	[29]
SLAC E-139	DIS	$\mathrm{M}(27) / \mathrm{D}$	17	3.6	1	[25]
NMC 96	DIS	M1/C	15	6.7	1	[28]
SLAC E-139	DIS	$\mathrm{Ca}(40) / \mathrm{D}$	7	1.3	1	[25]
FNAL-ETT2	DY	Ca / D	9	5.0	10	29
NMC 96, reanalysis	DIS	Ca / D	15	27.9	,	[26]
NMC 96, reanalysis	DIS	$\mathrm{Ca} / \mathrm{LL}$	20	25.1	1	[25]
NMC 96	DIS	Ca / C	15	6.3	1	[28]
SLAC E-139	DIS	$\mathrm{Fe}(56) / \mathrm{D}$	23	16.5	1	[25]
PNAL-ETT2	DY	Fe / D	9	5.1	10	29
NMC 66	DIS	Fe / C	15	11.9	,	28
ENAL-E966	DY	$\mathrm{Fe} / \mathrm{Be}$	28	21.6	1	$30]$
CERN EMC	DIS	$\mathrm{Cu}(64) / \mathrm{D}$	19	12.3	1	[31]
SL.AC E-139	DIS	Ag 1208$) / \mathrm{D}$	7	2.3	1	[25]
NMC 66	DIS	$\mathrm{Sa}(117) / \mathrm{C}$	15	10.9	1	${ }^{28}$
NMC $66, Q^{2}$ dep. $x \leq 0.025$	DIS	Sa / C	24	9.4	10	[32
NMC 96, Q^{2} dep. $x>0.025$	DIS	Sa / C	120	73.2	1	[32]
PNAL-ETT2	DY	W(184)/D	9	10.0	10	[29]
FNAL-E866	DY	W/Be	28	25.5	,	[30]
SLAC E-139	DIS	$\mathrm{Au}(197) / \mathrm{D}$	18	6.1	1	[25]
RHIC-BRAHMS	h^{-}prod.	dAu/pp	6	2.2	40	[11]
RHIC-PHENIX	π^{0} prod.	dAu/pp	35	21.3	1	[14, 15]
rhic-star	$\pi^{+}+\pi^{-}$prod.	dAu/DP	10	3.5	1	(16)
NMC 96	DIS	Pb / C	15	5.1	1	[28]
total			627	448		

Included data

 [EPS09]DIS: (484 points) SLAC-E-I39
NMC 95, 95re, 96 + EMC
- leave E665 out

DY in p+A (92 points) E772 \& E866

RHIC inclusive dAu (5I points)
PHENIX/STAR: midrapidity BRAHMS: forward Include only $p_{T}>2 \mathrm{GeV}$

Workshop on the LHeC - June 2012

Experiment	Process	Nurcei	Data poims	χ^{2}	Weight	Ref.
SLAC E-139	DIS	He (4)/D	18	2.0	1	25
NMC \%6, reanalysis	DIS	He / D	16	12.1	1	26
NMC 95	DIS	Li(6)/D	15	30.7	1	(27)
SLAC E-139	DIS	Be(9)/D	17	5.5	1	25
NMC 96	DIS	$\mathrm{Be}(9) / \mathrm{C}$	15	4.2	1	28
SLAC E-139				3.5	1	25
NMC 85				10.5	5	27
NMCOg, reanalysis				17.8	5	26
WMCOE monelusis	Dis	+/	30	36.4	1	\%\%
FNML-ET72	DY	C/D	9	8.9	10	[29]
SI.AC E-139	DIS	$\mathrm{Al}(27) / \mathrm{D}$	17	3.6	1	25)
NMC 66	DIS	M/C	15	6.7	1	28
S14CE-139	nis	$\mathrm{Ca} / 4 \mathrm{~m} / \mathrm{D}$	7	13	1	[0\%
FNAL-ET72	DY	Ca / D	9	5.10	10	29
-meso, ranky	4	em	\%	27.8		
NMC 96, reandysis	DIS	$\mathrm{Ca} / \mathrm{LL}$	20	26.1	1	26
NMC 96	DIS	Ca / C	15	6.3	1	28
SIACP 139	nis	5eiceim	93	165	1	[0\%
FNML-ET72	DY	Fe / D	9	5.0	10	29
-nvest	02	Trje		-1.30		
ENAL-Es66	DY	$\mathrm{Fe} / \mathrm{Be}$	28	21.6	1	(30]
CERN EMC			19	12.3	1	[31]
SLIAC E-139			S	2.3	1	25
	ave	sinuma	1.	0.		mes
NMC 96, Q^{2} dep. $x \leq 0.025$	DIS	So / C	24	9.4	10	32
	DTs	sayc	121	70.2	T	[12]
PNAL-ET72	DY	W(184)/D	9	10.0	10	29
PNAL-Es66	DY	W/Be	28	26.5	1	$30]$
G1actiza	nes	Awicgim	18	61	1	Mas
FHIC-BRAHMS	h^{-}prod.	dAu/po	6	22	6	[11]
-1me-timis	$n{ }^{\circ}$ prod.	(inutpr	T0	2..)		10, 10
RHIC-STAR	$\pi^{+}+\pi^{-}$prod.	dAu/po	10	3.5	1	
NMC 96	DIS	Pb / C	15	5.1	1	[28)
total			627	448		

Included data

 [EPS09]DIS: (484 points) SLAC-E-I39
NMC 95, 95re, 96 + EMC
- leave E665 out

DY in p+A (92 points) E772 \& E866

RHIC inclusive dAu (5I points)
PHENIX/STAR: midrapidity BRAHMS: forward
Include only $p_{T}>2 \mathrm{GeV}$

Workshop on the LHeC - June 2012

Experiment	Process	Nuclei	Data poims	χ^{2}	Weight	Ref.
SLAC E-139	DIS	$\mathrm{He}(4) / \mathrm{D}$	18	2.0	1	[25
NMC \%5, reanalysis	DIS	He / D	16	12.1	1	26
NMC 85	DIS	Li(6)/D	15	30.7	1	[27]
SLAC E-139	DIS	$\mathrm{Be}(9) / \mathrm{D}$	17	5.5	1	[25
NMC 96	DIS	$\mathrm{Be}(9) / \mathrm{C}$	15	4.2	1	${ }^{28}$
SL.AC E-139				3.5	1	${ }^{25}$
NMC 95				10.5	5	27)
NMCO6, reanalysis				17.8	5	126
NMCOE menelusis	Dis	\%	30	36.4	1	Par
FNML-ET72	DY	C/D	9	8.9	10	[29]
SILAC E-139	DIS	$\mathrm{Ml}(27) / \mathrm{D}$	17	3.6	1	[25]
NMC 66	DIS	M1/C	15	6.7	1	[28]
SIACP. 139	nis	Ca/amid	7	13	1	[25]
FNML-ET72	DY	Ca / D	9	5.0	10	$[29]$
	± 9	9		40		
NMC 96, reandysis	DIS	$\mathrm{Ca} / \mathrm{LL}$	20	26.1	1	$[26$
NMC 66	DIS	Ca / C	15	6.3	1	[28]
SIAC P 139	nis	E.iceim	32	165	1	m
FNML-ET72	DY	Fe / D	9	5.0	10	[29]
coneso	De	fre	*	-1.0\%		
PNAL-Es66	DY	$\mathrm{Fe} / \mathrm{Be}$	28	21.6	1	[30]
CERN EMC			19	12.3	1	[31]
SL.AC E-139			Si_{7}	2.3	1	[25]
cumos	nos	surnoc	1.	no		
NMC 96, Q^{2} dep. $x \leq 0.025$	DIS	Sn / C	24	9.4	10	32
	DTO	suyb	121	70.2	T	[12]
PNAL-ET72	DY	W(184)/D	9	10.0	10	[29]
PNAL-Es66	DY	W/Be	28	26.5	1	[30]
S14CD 138	nis	Aw/19\%)/	18	61	1	m
FHIC-BRAHMS	h^{-}prod.	dAu/pp	6	2.2	40	[11]
		Unufp	T0	21.0		N2, Tiv
RHIC-STAR	$\pi^{+}+\pi^{-}$prod.	dAu/po	10	3.5	1	[16]
NMC 96	DIS	Pb / C	15	5.1	1	

Included data [EPS09]

DIS: (484 points) SLAC-E-I39

Experiment	Process	Nucki	Data poiets
SLAC E-139	DIS	He(4)/D	18
NMC 95, reanslysis	DIS	He / D	16
NMC 95	DIS	Li(6)/D	15
SLAC E-139	DIS	$\mathrm{Be}(9) / \mathrm{D}$	17
NMC 96	DIS	$\mathrm{Be}(9) / \mathrm{C}$	15
SIMC E-139	sea celarars		
NMC 85			
NMC \% \%, reandusis			
NMCos manelus	-		\%

Not possible to fit one single nucleus: use proton as reference and A-dependence

$$
\begin{gathered}
R_{i}^{A}\left(x, Q^{2}\right)=\frac{f_{i}^{A}\left(x, Q^{2}\right)}{f_{i}^{p}\left(x, Q^{2}\right)} \\
\left\{R_{i}^{A}\left(x,\left\{a_{i}\right\}\right)\right\} \text { at } Q_{0}^{2}
\end{gathered}
$$

A fit for (say) Pb alone would be most welcome

PHENIX/s IAR: midrapidity BRAHMS: forward Include only $p_{T}>2 \mathrm{GeV}$

Workshop on the LHeC - June 2012

PNAL-ETT2	DY	W(184)/D	9	10.0	10	29
PNAL-Es66	DY	W/Be	28	26.5	1	30]
C14CD139	nis	Au(10T)/0	18	61	1	(10)
RHIC-BRAHMS	h^{-}prod.	dAu/pp	6	2.2	40	[11)
FHIC-STAR	$\pi^{+}+\pi^{-}$prod.	dAu/pp	10	+1.0.	i	TV,
NMC 96	DIS	Pb / C	15	5.1	1	[28]

RHIC in

Approximate ranges and constrains in EPS09

Valence

Sea quarks

Gluons

Approximate ranges and constrains in EPS09

Valence
 Sea quarks

Gluons

Constrained by DIS

Approximate ranges and constrains in EPS09

Valence

Sea quarks

Gluons

Constrained by DIS
Constrained by DY

Approximate ranges and constrains in EPS09

Valence

Sea quarks

Gluons

Constrained by DIS
Constrained by DY
Sum rules and dAu@RHIC

Approximate ranges and constrains in EPS09

Valence

Sea quarks

Gluons

Constrained by DIS

Constrained by DY
\square Sum rules and dAu@RHIC
Unconstrained

Approximate ranges and constrains in EPS09

Valence

Sea quarks

Gluons

\square Constrained by DIS
[these ranges are very approximative... but valid in general for other analyses]
\square Sum rules and dAu@RHIC
Unconstrained

Nuclear PDFs

\Rightarrow Initial conditions and error analysis for different NLO sets

	$\mathrm{Chi}^{2} /$ dof
EPS09	0.79
HKN	1.58
nCTEQ	0.89
DSSZ	0.99

\Rightarrow Large uncertainties especially for gluons - smaller at large virtuality
\Rightarrow Notice that parametrization bias effects are present
Bands to be considered as lower bounds

Additional checks of factorization: neutrino DIS

NuTeV: 2618 data CDHSW: 1533 data CHORUS: 1214 data

[Paukkunen, Salgado, 2010]
\Rightarrow Non-trivial check (neutrino data not included in the fit)
Result agrees with DSSZ (data included in the fit)

G•MGLTSM•MS

[Slide stolen from K. Kovari's talk at DIS 2012]

Q Incompatibility of neutrino DIS with charged lepton DIS (?)

- conclusions heavily rely on only NuTeV data - most precise
- incompatibility a "precision" effect - the result changes e.g. when using uncorrelated errors
- tension in NuTeV data \rightarrow high χ^{2} of the fit to NuTeV alone \rightarrow problem of NuTeV data ?
- NOMAD data can help decide

QThe impact of nuclear PDF from neutrino DIS on proton PDF

- how does the incompatibility of neutrino DIS impact the uncertainty of strange quark PDF ?

G•MGLTSM•MS

[Slide stolen from K. Kovari's talk at DIS 2012]
Q Incompatibility of neutrino DIS with charged lepton DIS (?)

- conclusions heavily rely on only NuTeV data - most precise
- incompatibility a "precision" effect - the result changes e.g. when using uncorrelated errors
- tension in NuTeV data \rightarrow high χ^{2} of the fit to NuTeV alone \rightarrow problem of NuTeV data ?
- NOMAD data can help decide

QThe impact of nuclear PDF from neutrino DIS on proton PDF

- how does the incompatibility of neutrino DIS impact the uncertainty of strange quark PDF ?

More precise neutrino data, but also better pA or nuclear-DIS data would indeed solve the problem Relevant for proton PDFs

W/Z bosons in pA: a very promising tool

\Rightarrow The rapidity asymmetry in pA can be exploited for nPDF studies

\Rightarrow Small isospin effects on Z production

Asymmetry provides constraints without pp reference PbPb much less constraining

W/Z bosons in pA: a very promising tool

DGLAP global fits provide the technology

- One of the most standardized methods in HEP

Provide the data and checks of (collinear)
factorization will be performed

- (\& sets of nPDF released)

Saturation of partonic densities

(Color Glass Condensate)

pA as a benchmark for the bulk particle production
Only theoretically controlled tool to compute the initial state of the system (essential for Hot QCD phenomenology)

Hits of saturation: RHIC@forward rapidities

\Rightarrow Suppression of yields
Small-x evolution

\Rightarrow Disappearance of back-to-back
Broadening STAR preliminary

\Rightarrow PHENIX: forward-forward and central-forward studied

Extrapolation to pA@LHC

[Albacete, Hard Probes 2012 - May 2012]

Extrapolation to pA@LHC

> Moving forward: Testing the evolution

[Albacete, Hard Probes 2012 - May 2012]

GGC: Short list of theoretical developments

$$
\text { Evolution Equations BK-JIMWLK: } \quad \frac{\partial \phi(x, k)}{\partial \ln (1 / x)}=\mathcal{K} \otimes \phi(x, k)-\phi^{2}(x, k) ; \quad \frac{\partial W[\rho]}{\partial Y}=. .
$$

-Running coupling corrections [Balitsky, Kovchegov-Weigert, Gardi et at]
-Full NLO kernel [Balitsky]
-High-Q ${ }^{2}$ effects (CCFM + saturation) [Avsar-Iancu]
-Kinematic constraints \& b -dependence in BK evolution [Berger-Stasto]

- Subleading-N(c) corrections [kovchegov-Weigert]
- ...

$$
\text { Production processes: } \frac{d N^{A B \rightarrow X}}{d^{3} p_{1} \ldots}\left[\phi(x, k) ; W_{Y}[\rho]\right]
$$

Slide shamelessly stolen from Albacete at QMII
$\sqrt{ }$-Factorization of multiparticle production processes [Gelis-Lappi-Venugopalan]
X - Analytic solutions to Yang-Mills EOM [Blaizot-Mehtar Tani-Lappi]
X - Running coupling corrections to kt-factorization [Kovchegov-Horowitz]
X - DIS NLO photon impact factors [Balitsky-Chirilli]

- Di-hadron correlations [Dumitru-Jalilian Marian, Dominguez et al]
X - Progress in the hybrid formalism (CGC+pdf's) [Altinoluk-Kovner]
X - New observables beyond the large-Nc limit [Marquet-Weigert]
- ...

Used in phenomenological works? \checkmark Yes \times No \checkmark A bit :)

The problem of impact parameter

\Rightarrow The BK equations are perturbative
The gluon (dipole) can be emitted at arbitrary distances
Equivalent to Weizsacker-Williams photons in QED
\Rightarrow Tails grow too fast to describe experimental data
pPb central collisions - More clear signal of saturation? Needs good experimental control

Summary

Small-x physics interesting QCD testing ground

- Departure from DGLAP? Nuclear vs proton case
- Potentially important phenomenological consequences (LHC)
- Precision of the data high, more to come from LHC

Nuclear PDFs badly constrained at small-x

- pA only possibility to reduce uncertainties
- Very standard technology but data needed

Saturation of partonic densities
— pA@LHC arguably the best experimental option before LHeC, etc

- Phenomenology applicable to the proton case
- Only theoretical controlled way to compute IS in AA - hot matter

Comparison with data included in the fit

Checks of factorization: forward@RHIC

\Rightarrow Good description except for pp @ $y=3.2$
\Rightarrow Not conclusive, LHC will indeed help by reaching smaller-x

Checks of factorization: forward@RHIC

[Eskola, Paukkunen, Salgado, 2010]

\Rightarrow Good description except for pp @ $y=3.2$
\Rightarrow Not conclusive, LHC will indeed help by reaching smaller-x

More on neutrino DIS: NuTeV

