AA-pA-eA complementarity

[also some ep complementarity]

Carlos A. Salgado Universidade de Santiago de Compostela and CERN

2012 CERN-ECFA-NuPECC Workshop on the LHeC Chavannes-de-Bogis, Switzerland - June 2012

carlos.salgado@usc.es

http://cern.ch/csalgado

New lepton-proton/nucleus colliders being planned

LHC and RHIC experiment upgrades will precede the (eventual) operation of LHeC and/or EIC - Complementarity

Proton-nucleus at the LHC

Feasibility checks performed - estimate luminosity

 $L=10^{29}$ cm⁻² s⁻¹ (full energy) [Integrated in 10^6 s: L=100 nb⁻¹]

LHC two-in-one magnet

- Equal rigidity :: $p_{Pb} = Z p_{proton}$
- Center of mass shifted in rapidity $\Delta y = 0.46$
- Top LHC energy for pPb: 8.8 TeV

Unequal revolution freq. at injection and ramp

First pPb run scheduled in 2012 - max. energy 5TeV

- A new physics system just before the 2013-2014 shutdown
- Estimated integrated luminosity L= 20 nb⁻¹

forza forte quark up (gluóns)

Why proton-nucleus?

[To study the structure of a large object make collisions with smaller objects (Rutherford experiment...)]

The proton structure is constrained by DIS + other data

— HERA data of utmost importance

Need pA to study the high-energy nuclear structure

- DIS data is old (90's) short number and with limited range
- pA@LHC is the only experimental condition available before an eventual lepton-A collider (LHeC, eRHIC?)
- Needed as benchmark for the AA program
- High-density effects (saturation) enhanced in nuclei

Low-x Physics with electrons, protons and nuclei

One of the basic questions:

Low-x Physics with electrons, protons and nuclei

One of the basic questions:

DGLAP or not DGLAP

- Saturation of partonic densities
- Resummation
- Signs of BFKL
- Violations of DGLAP expected to be larger in nuclei

[For hot QCD studies this is an essential question: Initial state of the system]

Some historical perspective

Global DGLAP fits work

- Essential for the phenomenology
- In particular LHC

Some historical perspective

Global DGLAP fits work

- Essential for the phenomenology
- In particular LHC

Also for nuclei [talk by P. Zurita]

Reduced amount of data

Geometric scaling as a qualitative signature

[Stasto, Golec-Biernat, Kwiecinski 2001; Armesto, Salgado, Wiedemann 2004]

Energy and centrality dependences fixed by lepton-nucleus data

Combined HERA data: unprecedented precision

[NNPDF arXiv:1107.2652 [hep-ph]]

Still, uncertainties large at small-x

Non-linear BK equations also fit small-x

Excluding the small-x data from the fits would result in larger uncertainties at the LHC

10⁻⁴

 10^{-4}

nPDFs: global analyses. Status

Main goals

- Check the factorization of nPDFs for hard processes
- Fix the benchmark for HI hot matter or saturation

EKS98 [Eskola, Kolhinen, Ruuskanen, Salgado 1998]

HKM [Hirai, Kumano, Miyama, 2001]

nDS [de Florian, Sassot, 2003]

HKN [Hirai, Kumano, Nagai, 2004; 2007]

EPS08, EPS09 [Eskola, Paukkunen, Salgado, 2008; 2009]

nCTEQ [Kovarik et al, 2011]

DSSZ [de Florian, Sassot, Stratmann, Zurita, 2011]

[EPS09]

DIS: (484 points)

SLAC-E-139 NMC 95, 95re, 96 + EMC - leave E665 out

DY in p+A (92 points) E772 & E866

RHIC inclusive dAu (51 points)

PHENIX/STAR: midrapidity BRAHMS: forward Include only $p_T > 2 \, \mathrm{GeV}$

Experiment	Process	Nuclei	Data points	χ^2	Weight	Ref.
SLAC E-139	DIS	He(4)/D	18	2.0	1	[25]
NMC 95, reanalysis	DIS	He/D	16	12.1	1	[26]
NMC 95	DIS	Li(6)/D	15	30.7	1	[27]
SLAC E-139	DIS	Be(9)/D	17	5.5	1	[25]
NMC 96	DIS	Be(9)/C	15	4.2	1	[28]
SLAC E-139	DIS	C(12)/D	7	3.5	1	[25]
NMC 95	DIS	C/D	15	10.5	5	[27]
NMC 95, reanalysis	DIS	C/D	16	17.8	5	26
NMC 95, reanalysis	DIS	C/Li	20	36.4	1	26
FNAL-E772	DY	C/D	9	8.9	10	[29]
SLAC E-139	DIS	Al(27)/D	17	3.6	1	[25]
NMC 96	DIS	Al/C	15	6.7	1	[28]
SLAC E-139	DIS	Ca(40)/D	7	1.3	1	25
FNAL-E772	DY	Ca/D	9	5.0	10	29
NMC 95, reanalysis	DIS	Ca/D	15	27.9	1	26
NMC 95, reanalysis	DIS	Ca/Li	20	26.1	i	26
NMC 96	DIS	Ca/C	15	6.3	i	[28]
itato so	DIS	Cayo	10	0.0	-	[20]
SLAC E-139	DIS	Fe(56)/D	23	16.5	1	25
FNAL-E772	DY	Fe/D	9	5.0	10	29
NMC 96	DIS	Fe/C	15	11.9	1	28
FNAL-E866	DY	Fe/Be	28	21.6	1	[30]
CERN EMC	DIS	$\mathrm{Cu}(64)/\mathrm{D}$	19	12.3	1	[31]
SLAC E-139	DIS	${\rm Ag}(108)/{\rm D}$	7	2.3	1	[25]
NMC 96	DIS	Sn(117)/C	15	10.9	1	[28]
NMC 96, Q^2 dep. $x \le 0.025$	DIS	Sn/C	24	9.4	10	32
NMC 96, Q^2 dep. $x > 0.025$	DIS	Sn/C	120	75.2	1	[32]
FNAL-E772	DY	W(184)/D	9	10.0	10	[29]
FNAL-E866	DY	W/Be	28	26.5	1	[30]
111111-12000		11/200	20	20.0	-	[ao]
SLAC E-139	DIS	Au(197)/D	18	6.1	1	[25]
RHIC-BRAHMS	h prod.	dAu/pp	6	2.2	40	[11]
RHIC-PHENIX	π^0 prod.	dAu/pp	35	21.3	1	[14, 15]
RHIC-STAR	$\pi^+ + \pi^-$ prod.	dAu/pp	10	3.5	1	[16]
NMC 96	DIS	Pb/C	15	5.1	1	[28]
total			627	448		

Workshop on the LHeC - June 2012

[EPS09]

DIS: (484 points)

SLAC-E-139 NMC 95, 95re, 96 + EMC - leave E665 out

DY in p+A (92 points) E772 & E866

RHIC inclusive dAu (51 points)

PHENIX/STAR: midrapidity BRAHMS: forward

Include only $p_T > 2 \,\mathrm{GeV}$

Experiment	Process	Nuclei	Data points	χ^2	Weight	Ref.
SLAC E-139	DIS	He(4)/D	18	2.0	1	[25]
NMC 95, reanalysis	DIS	He/D	16	12.1	1	[26]
NMC 95	DIS	Li(6)/D	15	30.7	1	[27]
SLAC E-139	DIS	Be(9)/D	17	5.5	1	[25]
NMC 96	DIS	Be(9)/C	15	4.2	1	[28]
SLAC E-139	Sea o	C(12)/D	7	3.5	1	[25]
NMC 95 NMC 95, reanalysis	sea (rks	10.5 17.8	5	[27]
NMC 95, reanalysis	DIS	CAL	20	26.4	1	26
FNAL-E772	DY	C/D	9	8.9	10	[29]
SLAC E-139	DIS	Al(27)/D	17	3.6	1	[25]
NMC 96	DIS	Al/C	15	6.7	1	[28]
SLAC F-139	DIS	Ca(40)/D	7	1.3	1	[95]
FNAL-E772	DY	Ca/D	9	5.0	10	[29]
NMC 95, reanalysis NMC 95, reanalysis	DIS	Ca/Li	20	26.1	i	[26]
NMC 96, reanalysis NMC 96	DIS	Ca/C	15	6.3	i	[28]
		cay c		5.0	-	[20]
STAC P.130	DIS	E ₀ (56)/D	93	16.5	1	[95]
FNAL-E772	DY	Fe/D	9	5.0	10	[29]
FNAL-E866	DY	Fe/Be	28	21.6	i	[30]
CERN EMC	DIS	Cu(64)/D	19	12.3	1	[31]
SLAC E-139	DIS G	uon	S 7	2.3	1	[25]
MMCGee	DIE	0-/1193/0	1.5	10.0	,	Deed
NMC 96, Q^2 dep. $x \le 0.025$	DIS	Sn/C	24	9.4	10	32
NMC 96, Q^{*} cep. $x > 0.025$	DIS	Sn/C	120	70.2	1	[32]
FNAL-E772	DY	W(184)/D	9	10.0	10	[29]
FNAL-E866	DY	W/Be	28	26.5	1	[30]
ST AC P. 190	DIS	Au(197)/D	19	6.1	1	[98]
RHIC-BRAHMS	h- prod.	dAu/pp	6	2.2	40	[11]
RHIC-FILMA	π^+ prod. $\pi^+ + \pi^-$ prod.	dAu/pp	10	3.5	i	[16]
NMC 96	DIS	Pb/C	15	5.1	1	[28]
total			607	440		
total			_e A Con	448		

[EPS09]

DIS: (484 points)

SLAC-E-139 NMC 95, 95re, 96 + EMC - leave E665 out

DY in p+A (92 points) E772 & E866

RHIC inclusive dAu (51 points)

PHENIX/STAR: midrapidity BRAHMS: forward

Include only $p_T > 2 \,\mathrm{GeV}$

Experiment	Process	Nuclei	Data points	χ^2	Weight	Ref.
SLAC E-139	DIS	He(4)/D	18	2.0	1	[25]
NMC 95, reanalysis	DIS	He/D	16	12.1	1	[26]
NMC 95	DIS	$\mathrm{Li}(6)/\mathrm{D}$	15	30.7	1	[27]
SLAC E-139	DIS	Be(9)/D	17	5.5	1	[25]
NMC 96	DIS	Be(9)/C	15	4.2	1	[28]
SLAC E-139	Sea (C(12)/D	7	3.5	1	[25]
NMC 95	sea (rks	10.5	5	[27]
NMC 95, reanalysis	DIS	0.01	20	17.8 36.4	5	26
FNAL-E772	DY	C/D	9	8.9	10	[29]
SLAC E-139	DIS	Al(27)/D	17	3.6	1	[25]
NMC 96	DIS	Al/C	15	6.7	1	[28]
SLAC F-139	DIS	Ca(40)/D	7	1.3	1	[95]
FNAL-E772	DY	Ca/D	9	5.0	10	[29]
NMC 95, reanalysis NMC 95, reanalysis	DIS	Ca/Li	20	26.1	1	[26]
NMC 96	DIS	Ca/C	15	6.3	1	[28]
SLAC P.189	DIS	E ₂ (56)/D	93	16.5	1	[95]
FNAL-E772	DIS	Fe/D Fe/C	9	5.0	10	[29]
FNAL-E866	DY	Fe/Be	28	21.6	i	[30]
CERN EMC	DIS	$\mathrm{Cu}(64)/\mathrm{D}$	19	12.3	1	[31]
SLAC E-139	DIS G	uon	S 7	2.3	1	[25]
VMC oc	Die	6-(117)/0	15	10.0		Does
NMC 96, Q^2 dep. $x \le 0.025$	DIS	Sn/C	24	9.4	10	32
NMC 90, Q^{α} dep. $x > 0.025$	DIS	Sn/C	120	70.2	1	[32]
FNAL-E772	DY	W(184)/D	9	10.0	10	[29]
FNAL-E866	DY	W/Be	28	26.5	1	[30]
STAC P.190	DIS	Au(197)/D	19	6.1	1	[95]
RHIC-BRAHMS	h prod. π prod.	dAu/pp dAu/pp	6	2.2	40	[11]
RHIC-STAR	$\pi^+ + \pi^-$ prod.	dAu/pp	10	3.5	1	[16]
NMC 96	DIS	Рь/С	15	5.1	1	[28]

Workshop on the LHeC - June 2012

[EPS09]

DIS: (484 points)

SLAC-E-139

NMC 95

- leave E

<u>DY in p</u> E772 & E

RHIC in

Experiment	Process	Nuclei	Data points	χ^2	Weight	Ref.
SLAC E-139	DIS	He(4)/D	18	2.0	1	[25]
NMC 95, reanalysis	DIS	He/D	16	12.1	1	[26]
NMC 95	DIS	Li(6)/D	15	30.7	1	[27]
SLAC E-139	DIS	Be(9)/D	17	5.5	1	[25]
NMC 96	DIS	Be(9)/C	15	4.2	1	[28]
SLAC E-139	DIS	C(12)/D	7	3.5	1	25
NMC 95	302	qua		10.5	5	[27]
NMC 95, reanalysis	SEa	чиа		17.8	5	26
NMC 65 reanalusis	DIS	CAL	90	36.4	1	[96]
					0	29

Not possible to fit one single nucleus: use proton as reference and A-dependence

$$R_i^A(x,Q^2) = \frac{f_i^A(x,Q^2)}{f_i^p(x,Q^2)}$$

$$\{R_i^A(x,\{a_i\})\}\ \text{at } Q_0^2$$

A fit for (say) Pb alone would be most welcome

PHENIX/STAR: midrapidity

BRAHMS: forward

Include only $p_T > 2 \,\mathrm{GeV}$

FNAL-E772 FNAL-E866	DY DY	W(184)/D W/Be	9 28	10.0 26.5	10 1	[29] [30]
STAC P.190	DIS	Au/1971/D	19	6.1	,	[98]
RHIC-BRAHMS	h- prod.	dAu/pp	6	2.2	40	[11]
RHIC-FHENIX RHIC-STAR	π^0 prod. $\pi^+ + \pi^-$ prod.	dAu/pp dAu/pp	30 10	3.5	1	[14, 10] [16]
NMC 96	DIS	Pb/C	15	5.1	1	[28]
total		A A A	627	448		

31

25

32

Workshop on the LHeC - June 2012

Constrained by DIS

Nuclear PDFs

Initial conditions and error analysis for different NLO sets

	Chi ² /dof
EPS09	0.79
HKN	1.58
nCTEQ	0.89
DSSZ	0.99

- Large uncertainties especially for gluons smaller at large virtuality
- > Notice that parametrization bias effects are present
 - Bands to be considered as lower bounds

Additional checks of factorization: neutrino DIS

Result agrees with DSSZ (data included in the fit)

CONCLUSIONS

[Slide stolen from K. Kovari's talk at DIS 2012]

- Incompatibility of neutrino DIS with charged lepton DIS (?)
 - conclusions heavily rely on only NuTeV data most precise
 - incompatibility a "precision" effect the result changes e.g. when using uncorrelated errors
 - tension in NuTeV data \rightarrow high χ^2 of the fit to NuTeV alone \rightarrow problem of NuTeV data?
 - NOMAD data can help decide

- The impact of nuclear PDF from neutrino DIS on proton PDF
 - how does the incompatibility of neutrino DIS impact the uncertainty of strange quark PDF?

CONCLUSIONS

[Slide stolen from K. Kovari's talk at DIS 2012]

- Incompatibility of neutrino DIS with charged lepton DIS (?)
 - conclusions heavily rely on only NuTeV data most precise
 - incompatibility a "precision" effect the result changes e.g. when using uncorrelated errors
 - tension in NuTeV data \rightarrow high χ^2 of the fit to NuTeV alone \rightarrow problem of NuTeV data?
 - NOMAD data can help decide

- The impact of nuclear PDF from neutrino DIS on proton PDF
 - how does the incompatibility of neutrino DIS impact the uncertainty of strange quark PDF?

More precise neutrino data, but also better pA or nuclear-DIS data would indeed solve the problem **Relevant for proton PDFs**

W/Z bosons in pA: a very promising tool

The rapidity asymmetry in pA can be exploited for nPDF studies

Asymmetry provides constraints without pp reference

PbPb much less constraining

W/Z bosons in pA: a very promising tool

Isospin effects important in W production pA useful for proton PDFs fits?

DGLAP global fits provide the technology

— One of the most standardized methods in HEP

Provide the data and checks of (collinear) factorization will be performed

- (& sets of nPDF released)

Saturation of partonic densities (Color Glass Condensate)

pA as a benchmark for the bulk particle production

Only theoretically controlled tool to compute the initial state of the system (essential for Hot QCD phenomenology)

Hits of saturation: RHIC@forward rapidities

Extrapolation to pA@LHC

Extrapolation to pA(a)LHC

GGC: Short list of theoretical developments

Evolution Equations BK-JIMWLK:

$$rac{\partial \phi(x,k)}{\partial \ln(1/x)} = \mathcal{K} \otimes \phi(x,k) - \phi^2(x,k) \; ; \quad rac{\partial W[
ho]}{\partial Y} = .$$

- Running coupling corrections [Balitsky, Kovchegov-Weigert, Gardi et at]
- -Full NLO kernel [Balitsky]
- -High-Q2 effects (CCFM + saturation) [Avsar-Iancu]
- -Kinematic constraints & b-dependence in BK evolution [Berger-Stasto]
- Subleading-N(c) corrections [kovchegov-Weigert]

- ...

Production processes:
$$rac{dN^{AB o X}}{d^3p_1\dots}[\phi(x,k);W_Y[
ho]]$$

Slide shamelessly stolen from Albacete at QMII

- √ Factorization of multiparticle production processes [Gelis-Lappi-Venugopalan]
- Analytic solutions to Yang-Mills EOM [Blaizot-Mehtar Tani-Lappi]
- Running coupling corrections to kt-factorization [Kovchegov-Horowitz]
- DIS NLO photon impact factors [Balitsky-Chirilli]
- √ Di-hadron correlations [Dumitru-Jalilian Marian, Dominguez et al]
- Progress in the hybrid formalism (CGC+pdf's) [Altinoluk-Kovner]
- X New observables beyond the large-Nc limit [Marquet-Weigert]

Used in phenomenological works? ✓ Yes X No ✓ A bit :)

The problem of impact parameter

- The BK equations are perturbative
 - The gluon (dipole) can be emitted at arbitrary distances
 - Equivalent to Weizsacker-Williams photons in QED
- Tails grow too fast to describe experimental data

pPb central collisions - More clear signal of saturation? Needs good experimental control

Summary

Small-x physics interesting QCD testing ground

- Departure from DGLAP? Nuclear vs proton case
- Potentially important phenomenological consequences (LHC)
- Precision of the data high, more to come from LHC

Nuclear PDFs badly constrained at small-x

- pA only possibility to reduce uncertainties
- Very standard technology but data needed

Saturation of partonic densities

- pA@LHC arguably the best experimental option before LHeC, etc.
- Phenomenology applicable to the proton case
- Only theoretical controlled way to compute IS in AA hot matter

Comparison with data included in the fit

Checks of factorization: forward@RHIC

- Good description except for pp @ y=3.2
- Not conclusive, LHC will indeed help by reaching smaller-x

Checks of factorization: forward@RHIC

[Eskola, Paukkunen, Salgado, 2010]

- Good description except for pp @ y=3.2
- Not conclusive, LHC will indeed help by reaching smaller-x

CD h

1.0

More on neutrino DIS: NuTeV

Our analysis points to systematic differences in NuTeV data as a function of the neutrino energy [only present for neutrino and for NuTeV]

This cannot be fixed by nuclear PDFs

[Notice: ratios with **theoretical** proton DIS. CTEQ6.6 used here]