Spin Rotator for LHeC: Ring-LINAC Option

M. Bai, C-A Department Brookhaven National Lab, Upton, NY

Outline

- Introduction
 - LHeC requirement
- Options
 - Low energy spin flipper
 - HERA type
 - RHIC type
- Conclusion

Requirement on polarized electron beam

Longitudinally polarized 60 GeV electron beam at IP

Spin motion of e Beam in ERL

 For a spin vector in the horizontal plane, it precesses at its nth path through arcs by

Beam Energy[GeV]	Φ [degrees]	Spin direction before IP
20	14.64	120.6
40	242.0	348.0
60	359.1	105.1

Option 1: Low Energy Spin Rotator

- Wien-filter in the injector to control the spin direction
 - Pros: economical and straightforward
 - Cons: spin spread due to different

amount of spin rotation for particles with different energy, ie. momentum spread

Spin rotation by an magnetic field

Option 2: High Energy Spin Rotator

Low energy spin rotator to bring

HERA Spin Rotator: Steffen

Consists of a series of dipoles

RHIC Spin Rotator

 Consists of four helical dipoles to rotate spin vector by 90 degrees around an axis in the horizontal plane

For each helical dipole,

High Energy Spin Rotator: RHIC Type

High Energy Spin Rotator: HERA Type

Each dipole is 5 meter long, total length is ~40 m

BH = 0.67 T BV = 0.68 T SR power = 0.81 Mwatt

High Energy Spin Rotator: Modified HERA

Type

Each dipole is 5 meter long, total length is ~60 m

Spin rotation of the 1st V bend [rad]

$$BH = 0.46 \text{ T}$$
 $BV = 0.56 \text{ T}$ SR power = 0.39 Mwatt

Summary

High energy spin rotator options

	Length of spin rotator [m]	Maximum orbit excursion [mm]	SR power [Mwatt]
RHIC type	60	82	0.31
HERA type	40	>100	0.81
Modified HERA type	60	>100	0.39

- It is a challenge of building a spin rotator for 60 GeV e beam
- With the same space, RHIC type seems to be more practical and flexible for controlling the spin direction at IP
- Needs more detailed study on how to meet the SR budget

