Importance of *e+D* scattering at a collider

Alberto Accardi

Hampton U. and Jefferson Lab

"4th workshop on the LHeC" Chavannes-de-Bogis, Switzerland 14-15 June 2012

Overview

- Why the deuteron?
- Nuclear effects from low to high x
 - beyond obvious LHeC strength
- Proton/neutron tagging
- Diffraction
 - Only touched upon inthis talk

Why deuteron?

- Deuteron as effective neutron beam
- Quark flavor decomposition

$$F_2(p) \propto 4u + d$$

$$F_2(n) \propto u + 4d$$

- $lue{}$ Particularly important at large x
 - Large d-quark uncertainty
 - d/u ratio at x → 1 probes
 non perturbative proton structure

Accardi et al. [CTEQ-JLab collab.] PRD84(2011)

 \square At $x \lesssim 10^{-2}$ sea quarks dominate, expect $F_2(p) \approx F_2(n)$

Why deuteron?

As baseline for nuclear PDFs

- $F_2(A)/F_2(D)$ is measured: approx. correct for isospin, remove syst.
 - Ideally, $F_2(A)/[ZF_2(p) + (A-Z)F_2(n)]$
- But $F_2(D) \neq F_2(p) + F_2(n)$, need to measure it

Why deuteron?

The simplest nucleus:

- Nuclear few-body calculations of p, n wave function available
- Testbed for nuclear effects calculations and modeling

Nuclear effects 1 - shadowing

Nuclear shadowing

- Double scattering only
- At low x << 0.01, Glauber-Gribov, no model dependency

- Connection to diffraction (on p and n) Badelek, Kwiecinsky, NPB370(1992)
- All implementations: 1-3% shadowing at $10^{-5} < x < 10^{-2}$
 - Main uncertainty: deuteron wave function

Nuclear effects 1 - shadowing

Shadowing + gluon recombinations

With recombination (2 different gluon PDF)

→ more shadowing

Without recombination

Nuclear effects 1 - shadowing

Shadowing + gluon recombinations

Test shadowing calculations in controlled setting

ibination gluons)

- → approach to saturation
- \rightarrow Access to diffractive $F_2^D(n)$

Without recombination

Nuclear effects 2 - antishadowing

Antishadowing

– Not obvious in data because $F_2(p) \neq F_2(n)$ at $x \gtrsim 0.01$

The baseline is not 1

$lue{}$ Needs direct measurements of $F_2(n)$

- Proton tagging, see later
- Data exist from BoNuS at x > 0.3, low Q; lower x, higher Q at JLab12

- Origin of EMC effect still a mystery after 30 years:
 - -x > 0.1 is a complex region
 - many theoretical uncertainties

Important for:

Fit of d quark at large x

- Accardi et al. [CTEQ-JLab] PRD84(2011)
- Constraining nucl. corrections, when compared to free proton data (for example, $p+p \rightarrow W(Z)+X$, PVDIS, ...)

 Accordity, ECT*, May 2012

- Not impossible to have good data at a collider
 - For example at EIC, 1 year of data at $L = 4 \text{ fb}^{-1}$ for 5+3 energies

- Advantage: large Q² leverage
 - Suppress 1/Q² power corrections
 - Gluon EMC effect via scaling violation of F₂
 - This may be as revolutionary as original quark EMC effect

Not impossible to have good data at a collider

d quark at large x Test of nuclear corrections Gluon EMC effect Adva

- Gluon EMC effect via scaling violation of F₂
 - This may be as revolutionary as original quark EMC effect

Nuclear effects 4 - superfast quarks

Sargsian et al JPG29 (2003)

- \square F2(D) can go to x > 1 at large Q2:
 - "superfast quarks"
- Scatter on faster-than-average nucleon
 - Probe short-rangeNN potential

- Scattering on exotica
 - e.g., 6-quark bags

$$F_{2,(6q)} \sim (1 - \frac{x}{2})^{10}$$

- Novel QCD mechanisms
 - Hard-gluon exchange?

Nuclear effects 4 - superfast quarks

Nuclear effects 4 - superfast quarks

Signatures

EIC, LHeC: larger Q^2

Nucleon tagging

Proton tagging: scattering on neutron

$$F_2 = F_2(x, Q^2, \vec{p})$$

 $\vec{p} = \text{spectator momentum}$

But: shadowing, binding, off-shellness, F. motion...

Small x: shadowing corrections

- Minimized when $\vec{p} \approx 0$
- Diffraction on "quasi-free neutrons"

Nucleon tagging

- Small x: Final State Interactions
 - Minimized for:
 - Spectators anti-parallel to γ^*
 - Slow protons
 - "quasi-free neutrons"
- Minimizing nuclear w.f. uncertainty
 - Take suitable ratios of F₂
- Neutron tagging: in-medium modifications
 - By comparing tagged to free protons

Nucle

Smal

Collider ideal for nucleon tagging, especially neutron

CHALLENGE: good control and resolution of spectator momentum

Minii

_ T

□ Neut in-m

BUT:

Neutron DIS, diffraction
Baseline for antishad. in D
Free vs. bound, off-shell protons

• • •

Summary: why deuteron?

- Flavor separation, baseline for nuclear PDF fits
- Nuclear effects from low to high x
 - Verify shadowing calculations, approach to sat., F₂^D(n)
 - Bound nucleons without 1/Q² corrections
 - "Superfast quarks"
- Proton/neutron tagging
 - DIS, diffraction on neutrons
 - Free vs. bound, off-shell protons
- Diffraction (not covered in this talk)
 - Coherent, breakup, incoherent