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Motivations

* Present observable (structure functions, cross
sections ) theoretical predictions are
essentially based on Massless PDFs

* Schemes induce better and better modeling of
the observables but they induce also
discontinuities which may lead to doubts on
the whole methodology

* Heavy quarks do exist before they get a pdf
even if in some instances some of their
observables may be built out of light partons
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Constraints on the method

* Have always six flavors but with heavy quarks
contributions increasing with Q?

 Modify splitting functions ... to satisfy heavy
guarks kinematic constraints and continuity

* Do all that coherently, satisfying sumrules and
recovering massless situation for Q2—w



DGLAP equations

* The electron proton reaction is :
e(l) +p(p) -> e(l-g)+ X(I+q)
Quadrimomenta are within ().
Q?=Sxy =-g* x=Q*/(2pq) y=pa/p! S=(I+p)*
W2 = (p+q)? = M? + Q?( 1/x-1) t=In(Q?)
e Parton o may be kicked out of the target if
W>2m_  where m,is the parton o mass. This

translate in a kinematical limit x<|_ with
, 1= 1+4 m,2/Q?

* Light partons fulfill always this condition but
neavy ones do only for Q%-> o




Parton distributions, functions of x and
Q? ,are noted by the name of the
parton species p=g,d,d,u,d,s,5,c,¢b,b,t,t
... and for the quarks d*=d td, ...
DGLAP equations are:

0ofot=2.P QI

P are splitting kernels also functions

of x and Q2 ,® stands for the
convolution integral ,i and o run on

the 1+2 N, partons species.




N;is the number of active flavors.
Usually it is the number of quark families
with Q?>m?,

DGLAP + integro differentiel subsystem
6g/6t=ng ®g+ZrPg,,®r+
oq*/ot=P,,Qg+Z P Qrt + P ®q*

Momentum fractions p = [ ! x p(x) dx
0g/0t=P,, g+X P, 1"
oq*/ot=P g+X Pert +Prysqt



Modifying DGLAP equations

* The idea is to modify the kernels in
order to satisfy simultaneously the 3
kinematical constraints
x< L, x <x,,x<lI,

P_;is the change to parton o at
Bjorken x radiated by parton i at x/t.
Problematic cases are for o heavier
thanilike forc->b



Replace: P, by P, & 9, with 0, =0(x-/,))

Or replace A(x) by AE)  with §=x/I,

Consequences: 0g/ot=P,, g+X . P,r*
oq*fot=1,(P,, g+E.P gF)+Prysq”

With [, =/x3,dx

This leads to N,=3+/_ +/, +/,

Sum of the phase spaces of the quarks

N, has to be used consistently in all the P

Also in the B function ( B,appears in ng)



Modified DGLAP equations

* DGLAP becomes
og/ot="F,, Qg+X,.P,Qr"
0q*/ot=0,Q(P,, ®g+L.P &Qr )+ Py Qq”
* Sum of quark equations shows that gand X
decouple from the others

* Non singlets cannot be defined as before but
one may use X, to define them. Light's
are still decoupled and heavy’'s become
decoupled when they are fully active.



* For /, -0 corresponding equation get
decoupled ( Appelquist-Carazzone theorem)

e Several equivalent linear combinations of the
new equations may be used

* This (intuitive ) method in the following will be
referred as CFNS



Coefficient functions

e Structure functions are obtained by:
Fe o~ Zi Cio ® 1

C are the coefficient functions

* This has exactly the same structure as the
DGLAP equations and is nothing more than a
change of scheme ( MS to DIS for F,) so it is
natural to use the same procedure than for
the DGLAP equations .



Derivation of LO massive structure functions

Uses method of G.Altarelli and G.Parisi (1977)
F=e’ at C% ®g isthe a; order massive
structure function S.Riemersma et al. PLB 347
where § = Q%/m?, ,t=In(§ )

OF/ot=e a,0(EC% )/ ot®g

F=e? ht

OF/ot=e’ a, P,,’Qg From massive DGLAP
P’ =(£C°% )/ ot



At LO the only reactionisg —> hh but not
only heavy quarks are produced also gluon
disappear . This has to be taken care of by a
change in P,,°? of B, the coefficient of its o
function: It has to be such that the
momentum sum rule is satisfied.

* Itimply as in CFNS a new definition of N;



Pns° Calculation

* Define:m=¢&(z1-1)-1,u=4zE1B=(1-u/(1-2))?
,L=log((1+ 3 )/(1-B)

¢ £ CO, = 2m T,2[-2{(1-22)+(1-2)u} B + {2(1-2)

+272 +2(1 z)u u?}L]

* =21 T,z {2(1-2)*+2z°}t  for§ — ©

¢ DECO )/ Bt =2m T, 2[2{ (1-2)u}P -2{(1-22)2

+(1- z)u}(l B2)/ B - {2(1 -z)u-2u?}L
+ {2(1-2)2+22% +2(1-z)u-u?} )/ B ]

* —> 21T,z {2(1-2)*+2z°} for& — oo



C.,° Longitudinal coefficient function

0(§C%, )/ ot=8m T z*[(1-z) (1- B%)/ B —u(L- 1-/ B)]
—0 for & > o

Using O F /ot =e? a, (%, ®Pp,°®g and C%, =1
one find C?,,=[ 0 (§ C°,)/0t]* ® 0 (§ C°, )/ot
Where [0 (€ C°,)/ct]t ® [0 (€ C°, )/ot] = 6(z-1y,)

Notice using F, instead of F; will give a different
result for the two coefficient functions
(and N,would not be monotonous in Q?)



About resumation

e To get this result (equivalent to a resumation)
a derivation has been made followed by an
integration but by the mean of an integro-
differential equation.

* This probably has a connection with the
procedure for Feynman graph of propagator
derivation with respect to a parameter followed

by an integration introducing and unknown
constant

e Like for light DGLAP the constant is the initial pdfs



Extension to NLO case

* a2 order massive structure function also exist
S.Riemersma et al. PLB 347 and it is tempting to use
the same method but things are much more
involved.

* For F; and F, thereis one C', but two C*, D*,
coefficients functions with different charge factors

* Thereis 2 splitting functions P,,! ,P,,! and 4
coefficient functions to be determined by the 4 C*.
This is analogous to the LO case where €9.,= 1 has
been imposed.



e C! ‘s are partly tabulated in PLB347 which render
their derivation and extrapolation to high & difficult .

* C" may contain factors up to t"*! which may
induce higher logarithmic divergences



cfns massless comparison

* | am of course aware that any comparison
should be done at the NNLO level between
this new scheme and the other outstanding
schemes at least at the pdf level and probably
even more, at the structure function level.

e But for that two evolution codes are needed
both running at NNLO, one accepting the
usual schemes and one built for the new
scheme



Kinematical range used

* Very often the start of evolution Q2 is chosen
just below the charm mass squared in order to
define pdf inputs only for the light partons.
But for if heavy quarks are present when the
kinematical range permits and in order to
have only light quarks present at input, | have
used Q2 =.6 Gev? low enough to justify
neglecting all the heavy quarks at input.
Needless to say that at so low a Q? predictivity
is completely absent but it is a parameter less
way to get a sensible charm when out of the
non perturbative region.



Data sample for fit

* A data sample made of about 1900 F2 or cross
section measurements extracted from NMC
BCDMS on protons and H1 preliminary is used
to fit the input pdfs independently for CFNS
and for massless scheme.

* The fitted Pdfsare GU, D, U=D=1.6 S

 The aim of this exercise is to show what kind
of new features might be seen and how far
they extend away from the transition points
of the other sheme.
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At Q? =45000 where cfns and massless momentum fractions are equal
top log(x) distribution black massless and red cfns



QCD representation of pdfs and kernels

Pdfs are represented by n vectors in the vectorial spce defined
by the base

Use an x network such that x,,, =s x. x, =1 s> 1 and base
functions such that ¢, ;(x)=¢;(sx)

Kernels are upper triangular band matrices K=%,_," m, B,
where B, matrix elements are B, (i,j) =0.,,. with k>0

For the kernels following operations are easy and fast:

vector multiplication, kernel multiplication, inversion, square
root, exponentiation.

i+k,j
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NLO technical difficulty

* C! ‘s are partly tabulated in PLB347 which render
their derivation and extrapolation to high ¢ difficult .

Below is shown the second derivative of C°, versus
z from & =0.04 to € =10

1000 : T = 7 TR
F g

; // / SNV,
o //// /e
wbo ?ﬁ // ///// /// / /,/,x’f }ﬁfﬁﬂ i
g
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At NLO there is 2 splitting functions P,4! ,P,41 and 2
coefficient functions to be determined by the 4 C*.
This is analogous to the LO case where €%, =1 has
been imposed.

The best choice would be to replace in the equation
F=aC ®p +a’EC' ®p where p isa vector
in the parton pdf space by Z ®p,; .Zis a matrix
depending upon the massless C .

In this way DIS splitting kernels will be found which
may be reverted backto M S by defining
(arbitrarily)aZ ... goingtoZ for E&—o0

C" contains factors t"*! which induce divergences.
They are cancelled by derivation only for t . But the
C!seem to have no t? terms as seen below

massless



* |n this way DIS splitting kernels will be found
which may be reverted back to M S by

defining (arbitrarily)aZ ... goingto
Z for E&—

massless



Extension to NLO case

* a2 order massive structure function also exist
S.Riemersma et al. PLB 347 and it is tempting to use
the same method but things are much more
involved.

 The best choice would be to replace in the equation
F=atC ®p +a’EC' ®p where p isa vector
in the parton pdf space by Z ®p, .Zis a matrix
depending upon the massless C*.



* C! ‘s are partly tabulated in PLB347 which
render their derivation and extrapolation to

high ¢ difficult . Below is shown the second
derivative of C%,



Derivation of LO massive splitting functions

Uzses method inspired by G Atarelli and . Parisi
Asymptotic Freedom in Parton language N.P. B126({1977)

F = e3fa,Cl @ g is the o, order massive strueture function
5. Riemersma et al. PLB 347 (1995) 143-151

F _ 20, 25%) 59 (keeping a, fixed)
where £ = % t = ln(£)

Un the other hand
F = E‘?.El'.h

& — 30, Phy @9

From this one may deduce:
_ [

d[£CT)
Where all the derivatives are taken at > fixed.
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At L0 the cnly escton & g kA
Dot ot only heavy quarks are produced bt also ghuons dissppesr

This s t0 b taken eare of by & ehange in Prg o f
the coeficient of the & fumetion : 1t has to be such that the momentum

sumrule i satsed. 1t imply & ealelable modieaton of the fivor mumber

hhhhhhhhhhhhhhhhh



ng calculation

Ecﬂ[uj):%Tﬁz[-i[(l-Ez)ﬂ+(l-f)u}ﬂ+{2[1-z]EJrEerE(l-z)u-ﬂg]Ll
S T2 -2 2o
b= B - ) L=

ﬁé@:;-r,u[au-z)uﬁ-z[u-zﬂu(l-z]u|§g+{-a{l-f)u+zuﬂ]L+{z(1-z]ﬂ+
2 491 - uﬂ} jﬁ]
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Longitudinal coefficient function
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SHOP.6

0.0.1 Longitudinal structure function

In contrast to the massless case massive quarks exhibit a longitudinal strocture function even at
leading order so it is necessary to define coefficient functions at this order ef{[?]):
'-'Jz:",a = dé(1 — :r]n:.:':'m (= 0,for massless case).
Using
dFr 4 d‘['fcﬂig]
ar = Eply dat @9 I[?::I

One find

'—':?,,r. =

d d{£CT
(€)1 e -

Where the inverted kernel ® the kernel itself gives the heavyside function H(l-x)
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About ressumation

SHOP.5

Notice that to get this result (equivalent to a ressumation) a derivation has been made followed by
an integration but by the mean of an integro- differential equation. This probably has a connexion
with the procedure for Feyvnmann graph of propagator derivation with respect to non integrated
parameters followed by an integration introducing an unknown constant. Here the constant is the
sot of initial pdfs.

14/06/2012 Workshop on the LHec
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Theoretical arguments

* |tis important to note moreover that the
ideas presented here are not new:

* &=x/l, is the scaling variable used in H. Georgi
and H.D. Politzer Phys Rev D 15,7 (1976) and
many other papers

* H. Georgi and H.D. Politzer use anomalous
dimensions variable with Q2. Anomalous
dimensions leading to splitting functions their
arguments should hold here.

For this they advocate |, = Q%(Q*+2mQ?)




They present a [3, variable with Q2.

Here it is |_= Q%(Q*+5mQ?)

S.Brodsky et al arXiv:hep-ph/9906324 have
N; order dependent

Last reference to this is D.D. Dietrich
arXiv:0908.1364 [hep-th]

As already stated the procedure leading to
satisfaction of the kinematical constraints as
been used lately for coefficient functions in
GM-VENS schemes

R.S. Thorne arXiv:1006.5925 [hep-th]
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Figure 1: ,.?-"-j'!"“*x versus log 100)* cfns: black full, massless: red dotted.
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OLD (dis keep)



* Notice also how small are the differences
between massless and continuous behavior

for a .

e Apart numerical differences (which may be

eventually cured by a judicious choice of @)
the outcome is similar for the various |, used



cfns massless relative difference




Cfns potential weak points

It essentially assumes that DGLAP equations
and all its components should exist even if
they are calculable only when quarks are light
or quasi light, so it interpolates coherently
between those cases and full scale range.

Other schemes have also their approximations
| am not able to decide what is the best

Renormalization group should decide and |
am not able to look into it.



Cfns strong points

* |t does not mix up different a, orders as do
mixed schemes.

* Heavy quarks participate to the evolution
when they start to appear, that is at the
beginning and at very low x and even at
leading order in ..

 There is no internal and external partons, only
internals.



e |t should be better at the small x due to
evolution

* |t covers the charm-bottom region where they
are both opening up which is not yet the case
in usual schemes



Parton distributions are noted by the name
of the parton species p = ¢,d,d,u,%,... and

for the quarks dt =d+ d,... are also IIItI‘D—
duced.

DGLAP equations read :

do Q2
Aln{Q?) pr” S

P are splitting functmns, : and o run on the
1+ ZNf partons species. Nf refers to the
number of active flavors and is the main
problem of the overall approach: Usually
Nf(z Ny integer) is taken as the number

of quark families such that Q< > mg



DGLAP equations separate into two in-
dependent subsystems when making use of

g" and ¢~ ,¢" one is:

8g(Q? :
% =Py ® 9(Q%) + Z’qu ®q"(Q7)
g=d
Sat(O? _ P
e =P ® (@) Phs 8 (@) + Y PE e (@)
r=d
Where

~ +
Phs =P+ PV, Ph=P5, P35, Py = Fr, Prs— %f.

g3’ q7’ J



Kernels P are polynomials in as; = 7% and

N  as follows:

Poy=as(Py, +NyPy) +al(Py,  +N{P)  +al(Py,  +NGP  +NPPL)

g4 g
Pu=a.  NP% NpPLT g (fopgjg +Nﬁ”P§§ )
'qu = aspgg —HIE (’P;g Jer’P;é, —ng’ ('ng —FNf’Pgé, Jer?'qu )
Py = a Py (P NGPY) Al (PEY HNGPR NP
’qu - az (;qul[] ‘|‘Nf’Pq§ll) ‘I‘ag (apqq?[] ‘|‘Nf’qugl +Nf2pqqgg)
Ps = a?( NfPER)  +d¥( NfPEL HNPPE)
Ps = as( NP +NFEPSY)

" existence comes from the s term in »,,.



Momentum sum rule

Sumrules

The total parton momentum is:

Jo Mwdz =1 with [T =g+ ! "
This imply that derivative of [ Ilzdz with

respect of In(Q?) is null for any set of par-
tons.

From that derives easily the following set
of properties of the kernel integrals which

will be noted Q = [i Pxdx
Qgg + Lgg = 0
ng + Q%S JFNfQ:gi_ — 0

Which has to be valid for any value of ag
and N f



Modifying DGLAP equations

The idea is to modify the kernels in order
to satisfy simultanously the three kinemat-
ical constraints z, < l, .x; < l;, o < x;

P, is the change to outcoming parton o
at Bjorken x radiated by incoming parton
i at Bjorken 7. Problematic cases are when
parton o is heavier than parton : like for
¢ — b Replacing P by K , the problematic
changing terms are:

/; }Coi(g)i(z)%

<



Requesting this term to be null for z > [
means that K(u) = 0 for u > [, which is
satisfied by

}Coz' =Poi ® 50@’
With the definition (for [, <1)
50@’ - Cboié(w — ZO)

The only constraint so far on ¢ is that it
goes to 0 for Q? — 0 and to 1 for Q% — .

Note that the effect of the § function is
to replace P(z) by P(§) with §{ =



With this modification the g7 subsystem
becomes:

09D) _p 66,0507+ P ® b8 4@
55?1(@2)_ gg ¥ Ugg & G . gq '& Ugg & f
o=
O 980 9(Q) + Phe © 515 0 QY + 3 PES 8, 81HQY
55?1(@2)_ qg qg ‘& g NS 7 4 s gr T

r=d

With the help of [':s:-14: =1 and the use of Q
relations given by the usual DGLAP, the
momentum sumrule determines completly
the modifications to do for heavy quark hA:
Opr = lpd(x — 1) for any r € u, ..., ¢t

and also Ny = Z;:dlq

All the others o0,; do not need to exist.



Note that for [, — 0 the corresponding
DGLAP equation will get decoupled and
the kinematical constraint automatically
verified.

In fact other solutions may be found im-
plying correlated changes in the ¢,;.

An example will be given in the last part
of this talk.



Modifying o, and coefficients functions

As seen above the momentum sumrule
leads to a specific non integer value of N i
and as a consequence also for gy and by
extension to the full set of 7 governing
the ag running. It is also natural that the
copling constant depends on flavor activ-
ity and not only on flavor number.
Anyhow as and parton evolution are linked
by renormalisation group theory.

As it is the structure functions and not the
parton distributions which are observable
one has to find also a procedure to modify
the coefficient functions.



The change parton distribution — struc-

ture function has exactly the same struc-
ture that the one of DGLAP equations:

do(Q?) .
An(Q?)

P -

Fo

This change i1s in fact nothing more than
a change of scheme, an example i1s going
from MS to DIS for Fb.

For /7 and F3 the schemes are unnamed
but they still exist.



From this one may infer that coeflicient

functions have to be modified in the same
way that splitting functions.
In fact it is even the importance of kine-
matic constraints stressed by one of the
R.Thorne papers and its use in the lastest
schemes which lead me to do this work.

Charged current
Exactly the same procedure will be used,
the phase space only will change using:

'.-'TL2

-1 o
=1t o



System decoupling

5
XL =2 g—ad lpnv =10 — =

Pg = qu(x — Jq) P = Zq d Pg

Subscript LIN 1s nsed do distinguich these
non singlets from the usual ones which may
not be used here with flavor number vary-
ing continously. With these one get the
following subsystem:

ST = To®a(@) + T ® Q)

35&32 = ¢@T@3(Q@%) + (Frns + 6@ TFs) @ D(Q%)
Séi_;(g? = Trs @ LN (@)

5;({3% = ¢ @T 0 @9(2°) + Trus @ R(Q*) + ¢ @ T's @ T(Q7)

FEvolving the seven distributions g,>.,c,b,%,d,u
the full system may be recovered using:

Tr=Z—c— 86—t drr + U + 8o = 0

Notice that this formulation is not unigue:
any linear combination of the seven eqgua-
tions with coellicients independent Q2 could
be used.



System decoupling

Zr

T =344 e =1—3F
¢y = Eqﬁ(x - Eq:' ¢ = E;:& ¢y
Subscript LN 1s used do distinguich these
non singlets from the usual ones which may
not be used here with flavor number vary-
ing continously. With these one get the
following subsystem:

;i{gj; = Ty ®9(Q%) + Ty @ T(QY)

gi((g?} = ¢0T,®9(Q) + (Tws +¢0Ts) ®T(Q)
a;ﬁ:[ﬁ? = Tus @Ln(Q?)

;i{gj) = ¢w@Tu®e(Q) +Trs @ h(Q") + 64 ®Ts ®T(Q)

Evolving the seven pdfs g,2.,¢,6,t,dy v ur
the tull system may be recovered using:
Tp=Y—c—b—t Gy + Uy + 8z =0

Notice that this formulation is not unique:
any linear combination of the seven equa-
tions with coeflicients independent Q2 could
be used.



Implementation (in new QCDFIT)

It is a program which works in x space
It includes an optimizing interface (Minuit).
it accept a variety of input distributions.

It has a variety of outputs: Pdfs, cross section
for lepto production,Drell-Yang mechanism ...

t pre-calculate the full evolution

t use an x grid linearly spaced in logx and a
ogQ? grid approximately in a,

Pdf ->one dimensional x array for a given Q?



e Kernels have a matrix representation but due
to their splitting or parton branching nature
they are upper triangular band matrices with
M;=m;; with i2j and so are also one
dimensional arrays for a given Q2.

* |ntegration of the renormalization group

equation is made numerically as its
parameters are functions of N; and so of Q?



The transport matrices defined by
; +1 ZT (0,7) ® 1(Q

are obtained by mtegratlon of the subsys-
tems using

Qj—i—l 82
T (o Q|1+ 5In(Q?)
1; ( Di0In(Q?) )
In the product §n(Q?) has to be small enough

to vary only according to rounding errors
when increasing the number of Q? nodes.



* My first concern was also to check as soon as
possible my ideas by building a transport
matrix integration valid at the same time for
CFNS and for constant flavor evolution



Fitted Pdf

.8

Q.6

o.4

0.2

0

14/06/2012

o~ -3 -2 - -1 -1 -5 o

Workshop on the LHec

69




Charm mass?

massless
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Beauty mass?
massless cfns
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cfns2

Charm mass?
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Top

massless

mass?
cfns
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