Accessing GPDs at LHeC

LHeC workshop , Chavannes-de-Bogis , June 2012

B. Pire
CPhT, École Polytechnique, Palaiseau

based on work done with L Szymanowski, J Wagner, S. Wallon
Section 5.2.3 in LHeC report
(Link to section 3 of EIC report : arXiv :1108.1713 [nucl-th])

Plan

\Rightarrow QCD (colinear) factorization for exclusive reactions * Success in DVCS : JLab, HERMES, HERA
\rightarrow GPD properties ; transverse imaging of the nucleon
\Rightarrow DVCS and Timelike Compton scattering at very high energies
\rightarrow NLO corrections ; higher twist contributions
\rightarrow access in UPC at LHC ; access at LHeC
\Leftrightarrow Exclusive meson electroproduction, spin physics and chiral-odd GPDs
$\Rightarrow k_{T}$ vs colinear factorization ; searching for the Odderon

QCD factorization in Exclusive processes

DVCS

Meson Production

\approx Factorisation between a hard part (perturbatively calculable) and a soft part (non-perturbative) Generalized Parton Distribution demonstrated for

$$
\begin{aligned}
& Q^{2}, W^{2} \rightarrow \infty, x_{B}=\frac{Q^{2}}{Q^{2}+W^{2}} \text { fixed and }|t| \ll Q^{2} \text { fixed } \\
& \quad \text { D. Mueller et al., X. Ji, A. Radyushkin, J. Collins et al. , '94, '96,'98 }
\end{aligned}
$$

Some very good news

The simplest hard exclusive process : $\gamma^{*} \gamma \rightarrow \pi^{0}$

FIG. 24: Comparison of the results for the product $Q^{2}\left|F\left(Q^{2}\right)\right|$ for the π^{0} from different experiments. The

Belle confirms the applicability of perturbative QCD analysis to $\pi^{0} \gamma$ transition form factor
after BABAR data shaking the faith of theorists.

Generalised Parton Distributions

Non-Local operators (as in DIS) and non diagonal matrix elements $=$ soft part of the amplitude for exclusive reactions

GPD $(x, \xi, t)=$ Fourier Transform of matrix elements

$$
\left.\left\langle N\left(p^{\prime}, \lambda^{\prime}\right)\right| \bar{\psi}(-z / 2)_{\alpha}[-z / 2 ; z / 2] \psi(z / 2)_{\beta}|N(p, \lambda)\rangle\right|_{z^{+}=0, z_{T}=0}
$$

ON THE LIGHT CONE $z^{2}=0$

$$
p^{\prime}-p=\Delta \quad \Delta^{2}=t \quad \Delta^{+}=-\xi\left(p+p^{\prime}\right)^{+} \quad x-x^{\prime}=2 \xi
$$

Energy flow in GPDs

Three different regions : mean momentum fraction x vs skewness ξ

antiquark content
$\bar{q} q$ content
quark content

Two different evolution equations
as $\bar{q}\left(-x, Q^{2}\right)$
as $\Phi^{\pi}\left(z, Q^{2}\right)$
as $q\left(x, Q^{2}\right)$

DGLAP
$\rightarrow \delta(-x)$

ERBL
$\rightarrow \Phi_{a s}^{\pi}\left(z, Q^{2}\right)=6 z \bar{z}$

DGLAP
$\rightarrow \delta(x)$

Impact picture Representation

M. Burkhardt, JP Ralston and BP, M. Diehl
t dependence of GPDs maps transverse position b_{T} of quarks.
Fourier transform GPD at zero skewness
$q\left(x, b_{T}\right)=(2 \pi)^{-2} \int d^{2} \Delta_{T} e^{i \Delta_{T} \cdot b_{T}} H(x, \xi=0, t)$ probability
Generalize at $\xi \neq 0 \rightarrow$ Quantum femtophotography.
The t-dependence of dVCS localizes transversally in the proton the q and g (DGLAP) or the $\bar{q} q$ and $g g$ pairs of size $\frac{1}{Q}$ (ERBL)

$$
\text { DGLAP region }(x>\xi)
$$

(a)

Femtophotography of quark
in the proton
(b)

Femtophotography of quark-antiquark pair in the proton

Quark and Gluon imaging

Thanks to Franck Sabatié

Parton imaging with an EIC

for this dream to become textbook for students in the 2030's one needs accurate measurement down to small values of ξ
\rightarrow High energy, high luminosity electron nucleon colliders essential

This is the reason I consider GPDs as a

 major breakthrough in QCD physics\Rightarrow Beautiful progress in forward exclusive photon (DVCS) and meson (DVMP) experiments and analysis
\leadsto Need to test universality of GPDs : TCS vs DVCS extractions
\Rightarrow Need to better understand NLO and twist 3 contributions $\left(\rightarrow \rho_{T}\right)$
\Rightarrow Need to resum soft gluon contributions (Altinoluk et al 2012)
\diamond Need to go to higher energies, smaller skewness (EIC; LHeC)

HERA results on DVCS

I forget on purpose the beautiful data at lower energies from HERMES and JLab

Describing DVCS results with GPDs

from K Kumericki and D. Mueler ArXiv 0904.0458

DVCS simulation for LHeC

for $\xi \approx x_{B} / 2$ from 210^{-5} to 610^{-3}
(for $1 \mathrm{fb}^{-1}$ luminosity)

Figure 5.27: Simulated LHeC measurement of the DVCS cross section multiplied by Q^{4} for different x values for a luminosity of $1 \mathrm{fb}^{-1}$, with $E_{e}=50 \mathrm{GeV}$, and electron and photon acceptance extending to within 1° of the beampipe with a cut at $P_{T}^{\gamma}=2 \mathrm{GeV}$. Only statistical uncertainties are considered.

and at very large Q^{2}

ξ from 610^{-5} to 410^{-3}

Figure 5.28: Simulated LHeC measurement of the DVCS cross section multiplied by Q^{4} for different x values for a luminosity of $100 \mathrm{fb}^{-1}$, with $E_{e}=50 \mathrm{GeV}$, and electron and photon acceptance extending to within 10° of the beampipe with a cut at $P_{T}^{\gamma}=5 \mathrm{GeV}$. Only statistical uncertainties are considered.

On spacelike vs timelike probe

$$
\gamma^{*}(q) N(p) \rightarrow \gamma^{*}\left(q^{\prime}\right) N^{\prime}\left(p^{\prime}\right) \quad \text { DVCS vs TCS }
$$

spacelike $q^{2}<0 ; q^{\prime 2}=0 \quad$ vs timelike $q^{2}=0 ; q^{\prime 2}>0$

$$
e N \rightarrow e^{\prime} N \gamma \quad \text { vs } \quad \gamma N \rightarrow N \mu^{+} \mu^{-}
$$

$\mathrm{LO}: \mathcal{A}_{D V C S}=\mathcal{A}_{T C S}^{*}$
$\mathrm{NLO}: \mathcal{A}_{D V C S} \neq \mathcal{A}_{T C S}^{*}$

$$
R_{T-S}^{q}=\frac{C_{1(\mathrm{TCS})}^{q}-C_{1(\mathrm{DVCS})}^{q *}}{C_{0}^{q}} .
$$

\leadsto Both timelike and spacelike data useful to check NLO analysis!

GPDs at LHC (and RHIC)

\rightleftharpoons Ultraperipheral Collisions : quasi real photons from proton beam
$\mu^{+} \mu^{-}$pair production

QED dominates over TCS but in specific kinematics
\rightarrow cutting out QED with angular cuts :

GPDs are expected to be large at small $x \approx \xi$
$\xi \approx Q^{2} / s_{\gamma p}$
\Rightarrow Probe of sea and gluon GPDs in small x regime

Observing TCS at LHC

\Rightarrow Characteristic signal from interference (charge conj. odd)

Gluon imaging through DVCS

- Do singlet quarks and gluons have the same transverse distribution?
- Hints from HERA: \quad Area $(q+\bar{q})>\operatorname{Area}(g)$
- Dynamical models predict difference: pion cloud, constituent quark picture
[Strikman, Weiss 09]
- No difference assumed in present pp MC generators for LHC!
- EIC: gluon size from J / ψ, singlet quark size from DVCS
- x-dependence: quark vs. gluon diffusion in wave function
- Detailed analysis: LO NLTO [Mueller et al.]

Detailed differential image of nucleon's partonic structure

Exclusive Meson production and GPDs

Vector meson production the most dominant process

Figure 5: The integrated cross section for $\gamma^{*} p \rightarrow \rho p$ (left) and $\gamma^{*} p \rightarrow \phi p$ (right) versus Q^{2} at $W \simeq 75 \mathrm{GeV}$. Data taken from [12, 44] (filled squares) and [13, 45] (open squares) for
ρ and ϕ production, respectively. The solid lines represent our results. Goloskokov Kroll hep-ph/0501242
ρ_{L} production leading twist and dominant.
ρ_{L}^{0} production mostly sensitive to gluon GPDs
probes $H(x, \xi, t)$ and $E(x, \xi, t)$ GPDs

Sea quark imaging through π electroproduction

- New territory for collider!
- Spatial structure of non-perturbative sea
- Closely related to JLab 12 GeV
- Quark spin/flavor separations
- Nucleon/meson structure
- Simulation for π^{+}production assuming 100 days at a luminosity of 10^{34} with 5 on 50 GeV ($\mathrm{s}=1000 \mathrm{GeV}^{2}$)
- V. Guzey, C. Weiss: Regge model
- T. Horn: empirical π^{+}parameterization
- Lower and more symmetric energies essential

from T Horn, EIC study

$\mathbf{e p} \rightarrow \mathbf{e}^{\prime} \pi^{+} \mathbf{n}$

[Tanja Horn, Antje Bruell, Christian Weiss]

Transverse spatial structure of nonperturbative sea quarks!

Spin dependent GPDs

A virtue of exclusive processes
\rightarrow spin physics without polarized beam/target!
π or η production (twist 2$)$: sensitive to $\tilde{H}(x, \xi, t)$ and $\tilde{E}(x, \xi, t)$ GPDs

$$
\text { recall }: \tilde{H}^{q}(x, 0,0)=\Delta^{q}(x) ; \tilde{H}^{g}(x, 0,0)=x \Delta^{G}(x)
$$

because γ^{5} in meson DA selects γ^{5} in GPD operator

Vector meson production selects "helicity averaged" GPDs; Photon (DVCS or TCS) production mixes all 4 chiral even GPDs What about chiral - odd GPDs?

Transversity GPDs

Transverse spin structure is very badly known!
\Rightarrow Even at the PDF level $\left(\Delta_{T} q(x)\right)$:
interesting but indirect (through TMDs) measurement of transversity \Rightarrow Usefulness of direct measurements of chiral-odd GPDs.

4 leading twist C-O GPDs : $H_{T}^{q}(x, \xi, t), E_{T}^{q}(x, \xi, t), \widetilde{H}_{T}^{q}(x, \xi, t), \widetilde{E}_{T}^{q}(x, \xi, t)$

$$
\text { with } H_{T}^{q}(x, 0,0)=\Delta_{T} q(x)
$$

Access to more features about the spin nucleon structure as :

- Momentum correlations of transversally polarized partons in a transversally polarized nucleon
- Transverse asymmetry of the angular momentum carried by quarks
- Density of polarized quarks in the impact parameter plane

Exclusive electroproduction of one vector meson $V_{T}=\rho_{T}$

Diehl, Gousset, BP, Phys. Rev. D59, 034023
Collins and Diehl, Phys. Rev. D61, 114015

DA of $V_{T} \propto<0\left|\bar{u}(0) \sigma^{\alpha \beta} u(x)\right| V>$
C-O GPDs $\left.\propto<p^{\prime}\left|\bar{u}(0) \sigma^{\delta \gamma} u(x)\right| p\right\rangle$

Basic Idea: C-O nature of ρ_{T} DA reveals the $\mathrm{C}-\mathrm{O}$ GPDs

BUT due to angular momentum and chirality conservation

$$
\operatorname{Tr}\left[H_{\alpha \beta \gamma \delta}^{\mu} \sigma^{\alpha \beta} \sigma^{\delta \gamma}\right]=0
$$

at leading power in $1 / Q$ to all orders in the strong coupling
way out \rightarrow twist 3 contributions to π electroproduction ...or ...

Photo- or electroproduction of 2 vector mesons

Ivanov, BP, Szymanowski and Teryaev, Phys. Lett. B550, 65
Enberg, BP and Szymanowski, Eur. Phys. J. C47, 87
Process at high energy, governed by the virtuality of the Pomeron

Photo- or electroproduction on a (polarized) nucleon target
Mesons (ρ_{L}^{0} and ρ_{T}^{+}) separated by a large rapidity gap Hard scale $=$ virtuality of the Pomeron (or p_{T} of the ρ^{0}) Estimate of rate and access to H_{T} in the ERBL domain

An hybrid description of exclusive processes
mixing k_{T} factorization (à la BFKL) and colinear factorization.

Modeling Chiral-Odd GPDs

model for GPD based on tensor meson exchange :

$$
H_{T}^{u d}(x, \xi, 0)=\frac{g_{b_{1} N N} f_{b_{1}}^{T}\left\langle k_{\perp}^{2}\right\rangle}{2 \sqrt{2} M_{N} m_{b_{1}}^{2}} \frac{\phi_{\perp}^{b_{1}}\left(\frac{x+\xi}{2 \xi}\right)}{2 \xi}
$$

+ some existing first Lattice QCD calculations
\rightarrow Born amplitude through $\gamma \rightarrow \rho^{0}$ Impact factor $J^{\gamma \rightarrow \rho^{0}}:$

$$
\begin{aligned}
\mathcal{M}^{\gamma p \rightarrow \rho^{0} \rho_{T}^{+} n} & =\sin \theta 16 \pi^{2} W^{2} \alpha_{s} f_{\rho}^{T} \xi \sqrt{\frac{1-\xi}{1+\xi}} \frac{C_{F}}{N_{c}\left(p_{T}^{2}\right)^{2}} \\
& \times \int_{0}^{1} \frac{d u \phi_{\perp}(u)}{u^{2} \bar{u}^{2}} J^{\gamma \rightarrow \rho^{0}}\left(u p_{T}, \bar{u} p_{T}\right) \frac{H_{T}^{u d}(\xi(2 u-1), \xi, t)}{\sqrt{2}}
\end{aligned}
$$

Nucleon spin orientation appears only through $\sin (\theta)$
unpolarized cross section non-zero!

Estimated cross sections

Figure 5.30: The differential cross section for the photoproduction (a) and electroproduction (b) of pair $\rho_{T}^{0} \rho_{T}^{+}$as a function of ξ for (a) $p_{T}^{2}=2,4$ and $6 \mathrm{GeV}^{2}$ and for (b) $p_{T}^{2}=2 \mathrm{GeV}^{2}$ and $Q^{2}=$ GeV^{2}. The cross sections for the production of the meson pair $\rho_{T}^{0} \rho_{T}^{0}$ are two times smaller.

Chiral-Odd GPDs should be measured at EIC / LHeC

Looking for the Odderon
 (within k_{T} factorization - link to twist 3 gluon GPD ?)

Figure 6.33: Feynman diagrams describing $\pi^{+} \pi^{-}$electroproduction in the Born approximation.

Figure 6.34: The charge asymmetry defined in Eq. (6.17) as a function of the $\pi^{+} \pi^{-}$invariant mass $m_{2 \pi}$.

$$
A\left(Q^{2}, t, m_{2 \pi}^{2}\right)=\frac{\int \cos \theta d \sigma\left(s, Q^{2}, t, m_{2 \pi}^{2}, \theta\right)}{\int d \sigma\left(s, Q^{2}, t, m_{2 \pi}^{2}, \theta\right)}=\frac{\int_{-1}^{1} \cos \theta d \cos \theta 2 \operatorname{Re}\left[\mathcal{M}_{P}^{\gamma_{L}^{*}}\left(\mathcal{M}_{O}^{\gamma_{L}^{*}}\right)^{*}\right]}{\int_{-1}^{1} d \cos \theta\left[\left|\mathcal{M}_{P}^{\gamma_{L}^{*}}\right|^{2}+\left|\mathcal{M}_{O}^{\gamma_{L}^{*}}\right|^{2}\right]}
$$

Conclusions

\Leftrightarrow The future of GPD measurements is bright at medium energies : JLab 12, COMPASS 2
\Rightarrow Much work began to uncover EIC possibilities in this domain.
\Rightarrow Much remains to be done for LHeC, including detector requirements.

NB : some uncovered items : nuclear GPDs, including coherent and break-up cases, saturation phenomena ...

Thank you

