

LHeC Tracking

A forward look – LHCb
Themis Bowcock

Forward spectrometer

 \rightarrow ~_100,000 bb pairs produced/second (10⁴ × B factories) Charm production factor ~20 higher!

Tracking performance.

Dipole magnet, polarity regularly switched to cancel systematic effects

New this year: beam optics changed to decouple crossing angles from LHC (V) and spectrometer magnet (H)

$$\Delta p/p = 0.4 - 0.6 \% (5-100 \text{ GeV/}c)$$

$$\sigma(m_{\rm B}) = 8 \,{\rm MeV}/c^2$$

~ 16 MeV/ c^2 [CMS DPS-2010-040] 22 MeV/ c^2

VELO (Vertex Locator)21 modules of *r*-φ silicon sensor disks
Retracted for safety during beam injection

Reconstructed beam-gas vertices

(used for luminosity measurement)

Impact parameter resolution ~ 20 μ m Proper-time resolution: σ_t = 45 fs cf CDF: σ_t = 87 fs [PRL 97 242003]

VELO: Complete half

 $O(300 \mu m)$ foil)

Resolution about 4microns at 6°

LHEC TRACKER

Requirements

Tracking requirements (from CDR)

Accurate measurements in p_T and θ

Secondary vertexing in maximum polar angle

Resolution of complex, multiparticle, highly energetic states in the fwd direction

Charge identification of scattered electron

Measurement if vector mesons of μ pairs $(J/\psi, \Upsilon)$

Resolution approx.

$$\frac{\delta p_T}{p_T^2} \sim \frac{\Delta}{0.3BL^2} \sqrt{\frac{720}{N+4}}$$

10 times better than H1 Similar to ATLAS in central region

Magnetic Field

Figure 12.14: Magnetic field components B_z (solenoid) and B_y (set of internal dipoles) on the beam axis across 12 m in z. Note, the magnetic field of the external electromagnets are not included here.

Baseline (A)

Detector Module	Abbreviation
Central Silicon Tracker	CST
Central Pixel Tracker	CPT
Central Forward Tracker	CFT
Central Backward Tracker	CBT
Forward Silicon Tracker	FST
Backward Silicon Tracker	BST

Beam Pipe

Power/cooling?

LR - Inner Dimensions Circular(x)=2.2cm; Elliptical(-x)=-10., y=2.2cm

Be(not AI) Very Non-Trivial Very expensive

Figure 12.6: Perspective drawing of the beam pipe and its dimensions in the linac-ring configuration. The dimensions consider a 1 cm safety margin around the synchrotron radiation envelope.

Layout

O(5M strips) + Pixels (~ 25kW)

Cen. Barrel	CPT1	CPT2	CPT3	CPT4	CST1	CST2	CST3	CST4	CST5
Min. R $[cm]$	3.1	5.6	8.1	10.6	21.2	25.6	31.2	36.7	42.7
Min. θ [°]	3.6	6.4	9.2	12.0	20.0	21.8	22.8	22.4	24.4
Max. $ \eta $	3.5	2.9	2.5	2.2	1.6	1.4	1.2	1.0	0.8
ΔR [cm]	2	2	2	2	3.5	3.5	3.5	3.5	3.5
$\pm z$ -length $[cm]$	50	50	50	50	58	64	74	84	94
Project $[m^2]$	1.4					8.1			
Cen. Endcaps	CFT4	CFT3	CFT2	CFT1		CBT1	CBT2	CBT3	CBT4
Min. R $[cm]$	3.1	3.1	3.1	3.1		3.1	3.1	3.1	3.1
Min. θ [°]	1.8	2.0	2.2	2.6		177.4	177.7	178	178.2
at z [cm]	101	90	80	70		-70	-80	-90	-101
Max./Min. η	4.2	4.0	3.9	3.8		-3.8	-3.9	-4.0	-4.2
Δz [cm]	7	7	7	7		7	7	7	7
Project $[m^2]$	1.8				1.8				
Fwd/Bwd	FST5	FST4	FST3	FST2	FST1		BST1	BST2	BST3
Min. R $[cm]$	3.1	3.1	3.1	3.1	3.1		3.1	3.1	3.1
Min. θ [°]	0.48	0.54	0.68	0.95	1.4		178.6	178.9	179.1
at z [cm]	370	330	265	190	130		-130	-170	-200
Max./Min. η	5.5	5.4	5.2	4.8	4.5		-4.5	-4.7	-4.8
Outer R $[cm]$	46.2	46.2	46.2	46.2	46.2		46.2	46.2	46.2
Δz [cm]	8	8	8	8	8		8	8	8
Project $[m^2]$	Project $[m^2]$ 3.3							2.0	

Central Barrel

Parameters	
В	$3.5\mathrm{T}$
X/X_0^{beampipe}	0.002
$X/X_{0 per (double) layer}^{CPT/CFT/CBT/FST/BST-det}$	0.025
$X/X_{0 \ per \ (double) \ layer}^{CST-det}$	0.02
efficiency	99%
Minimal inner radius	3.15cm
$\sigma_{ m CPT}$	$8\mu m$
$\sigma_{ m CST,CFT,CBT}$	$12\mu m$
$\sigma_{ m FST,BST}$	$15\mu m$

VELO: Material Budget

Average is 18.91% X₀ Particle exiting the

Material Budget (% X_o)

Impact Parameter

Momentum Resolution

Heavy Flavour

Radiation

For the LHCb radiation is a key issue

We chose n⁺n technology

Pioneered production of n⁺p (cheaper and does not invert)

Have a spare VELO in case of disaster...

Radiation Tolerance

Figure 12.60: 1 MeV Neutron Equivalent Fluence $[cm^{-2}/year]$.

Radiation

LHCb pp

At LHCb first hit ~ 10cm from IP on average although we go down to 0.8mm from beam

LHCb designed for $\sim 5x10^{14}$ p/cm²

Upgrade 5x10¹⁵p/cm²

Numbers indicate O(10⁹ p/cm²/yr) LHeC @ 5cm

5cm sphere -> 300cm² -> 10¹³ p/cm²/yr into acceptance

Assuming 10⁷s/yr at 40MHz

Every 25ns < 0.01 particles (Cosmic rate!!)

Beam gas etc accounted for?

Ever take pp collisions?

Important difference with LHCb

Potentially severe problem

Remember Belle destroyed in a few weeks

Also heat into beam pipe

7.14: LHeC interaction region with a schematic view of synchrotron radiation. Beam ories with 5σ and 10σ envelopes are shown. The parameters of the Q1 and Q2 ipole segments correspond to the Nb₃Sn half-aperture and single-aperture (with holes) mole of Fig. 8.5

Cooling

For LHCb we used (first time) bi-phase CO₂ now adopted by ATLAS/CMS

LHCb in vacuum (makes problem worse)

Each module around 25W

Need to maintain about -7C for sensors

Main power from electronics

Little heat load from foil

Proposed using same CO₂ system

Note though

Small pipes difficult

LHCb cooling has needed "unblocking" twice (Filters)

It is low mass

Complicated (and non-trivial) thermal interface

Lots of ATLAS R&D now

As with GPDs routing cooling & power is a major problem

Geometry not the same so routing is not!

Modular Design

Detector Technologies re-used rather than innovated

HERA, LHC & Upgrades and ILC

Cost

This IS a big expensive detector

Huge undertaking (At least 4 separate systems) each one of which is complex.

Sensor Type

CDR Suggested p+n technology

MAPS/Planar Si

Radiation Tolerance

MIP and Synchrotron. A CRITICAL ISSUE

FLUKA, BG, (pp?)

Trigger & R/O Electronics

Not addressed here. Re-use CMS/ATLAS?

VELO used full Analog R/O 10bit ADCs

Power and Cooling

A serious undertaking (compact space with 20kW+ just from electronics)

Mechanical Support & Beampipe

Complex

Beautiful (aka challenging) detector to build(!)

High level of performance specified

e, jets

Also with serious flavour tagging capability

Very tight schedule for completion even re-using GPD technology Will be large undertaking by the community

Do not underestimate the mechanical/electrical engineering required Small changes are never such

