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4 Lectures on String Pheno

Lecture 1: Why?

SUSY GUT settings in String Theory

Lecture 2: How?

Higgs Bundles as the Tool for String Phenomenology

Lecture 3: What exactly?

F-theory as a UV completion of Higgs bundles

Lecture 4: Seriously?!

Complete F-theory models and implications



Lecture 3: What exactly?



F-theory: from Higgs bundles to Geometry

Spectral Covers:

Hayashi, Kawano, Tatar, Watari, Donagi, Wijnholt, Marsano, Saulina, SSN, Weigand...

F-theory:

Vafa, Morrison, Katz, Bershadsky, Sadov, Kachru, ...

F-theory and geometry of elliptic CY4:

Esole, Yau, Marsano, SSN, Weigand, Grimm, Mayrhofer, Kuntzler, Krause, Lawrie,....

F-theory via M-theory:

Vafa, Morrison, Grimm, Hayashi, Cvetic, Klevers, ...



Finally, we need to talk about F-theory

F-theory = non-perturbative Type IIB vacua

• Coupling: complex field τ = C0 + ie−φ

• S-duality of Type IIB = SL2Z action, e.g. τ →−1/τ

• [Vafa] Geometrize τ consistent with SL2Z

⇒ Tag on to geometry a T2 or elliptic curve, where τ= complex

structure of curve

• 4 dim: compactify on T2 fibered Calabi-Yau fourfold Y

y2
= x3

+ f x + g

T2
τ → Y4

↓

B3



Various ways to reach F-theory

• Non-perturbative IIB theory

• F-theory on K3-fibered CY4 is dual to heterotic on elliptic CY3

• Duality to M-theory: useful approach to learn about effective theory

M/S1
A × S1

B
RA→0
−→ I IA/S1

B
RB→0
−→ I IB

RA, RB → 0 , gs = RA/RB = fixed

More generally: F-theory from M-theory on Eτ

Elliptic curve Eτ ∼ S1
A × S1

B :

{
Im(τ ) = gs = fixed

Vol(Eτ ) → 0



Gauge degrees of freedom/7-branes in F-theory

Gauge degrees of freedom (like in Type IIB) arise from 7-branes:

7-branes in IIB sources F9: z = direction perpendicular to 7-brane

d ⋆ F9 = δ(z − z0) ⇒
I

S1
dC0 = 1

which has solution locally

τ (z) = τ (z0) +
1

2πi
log(z − z0) + · · ·

• Monodromy: τ → τ + 1

• (p, q) 7-branes generalize this to SL2Z monodromies

• τ diverges at location of 7-brane

τ =complex structure of elliptic curve

⇒ Location of 7-branes are loci where fiber is singular



Gauge degrees of freedom/7-branes in F-theory

F-theory: realizes branes in terms of geometric singularities

8d N = 1 SYM with gauge groups: SU(n), SO(2n), E6,7,8



Matter fields geometrically

7-branes inside B6 wrapping surfaces, which intersect over a curve Σ:

⇒

⇒ Bifundamental matter is localized along curves Σ



Yukawa couplings from Triple-Intersections

Yukawa couplings from triple intersection of matter curves:

Gp → SU(5) ×U(1)1 ×U(1)2

Such as

SO(12) : 5̄H × 5̄M × 10M E6 : 10M × 10M × 5H SU(7) : 5 × 5̄ × 1



Elliptic curves

Classic theory of elliptic curves over C:

Weierstrass form: y2
= x3

+ f x + g

Geometrically: gives a branched covering over y-plane, with cuts

connecting the 3 roots, wlog 0, 1, λ of x3
+ f x + g and ∞⇒ gives a torus:



Singular elliptic curves

Singular loci arise when two branchpoints collide, ”cycle shrinks to 0

size”, i.e. roots of

x3
+ f x + g = (x − a)(x − b)(x − c)

collide, i.e. when (a − b) = 0 or (a − c) = 0 or (b − c) = 0. In terms of f , g:

a + b + c = 0 , g = −abc , f = ab + ac + bc

Then (a − b)(a − c)(b − c)=0 can be rewritten as

∆ = 4 f 3
+ 27g2

= 0



Singular Elliptic Fibrations

For elliptic fibrations over curves, Kodaira classified all the possible fiber

singularities. Generally understood to hold for fibers over higher

dimensional spaces in codimension 1.

Fibers characterized by an intersection graph of the resolution P
1s:



Elliptic fibrations

Consider fibrations: Eτ → B3, given by a Weierstrass form

y2
= x3

+ f x + g

• f and g are functions on the base B3.

• Let z be a local coordinate on B3

⇒ z = 0 gives a divisor S in B3 (surface), aka SGUT

• How to characterize that fiber above S is singular? Let:

f = ∑
i

fiz
i , g = ∑

i

giz
i

Singular along z = 0: ∆ = 4 f 3
+ 27g2

= O(zn)

• ∆ = 0 as an equation in B3 yields a divisor

⇒ singularity in codimension 1 (one equation in B3)



ordS( f ) ordS(g) ordS(∆) singularity local gauge group factor

I0 ≥ 0 ≥ 0 0 none –

I1 0 0 1 none –

I2 0 0 2 A1 SU(2)

Im, m ≥ 1 0 0 m Am−1 Sp([ m
2 ]) or SU(m)

I I ≥ 1 1 2 none –

I I I 1 ≥ 2 3 A1 SU(2)

IV ≥ 2 2 4 A2 Sp(1) or SU(3)

I∗0 ≥ 2 ≥ 3 6 D4 G2 or SO(7) or SO(8)

I∗m, m ≥ 1 2 3 m + 6 Dm+4 SO(2m + 7) or SO(2m + 8)

IV∗ ≥ 3 4 8 E6 F4 or E6

I I I∗ 3 ≥ 5 9 E7 E7

I I∗ ≥ 4 5 10 E8 E8

non-minimal ≥ 4 ≥ 6 ≥ 12 non-canonical –

Kodaira’s classification of singular fibers and gauge groups



The powerhouse for F-theory singularities: Tate form

How do we characterize a specific type of singularity?

Starting with Weierstrass form with specific Kodaira singular fiber

y2
= x3

+ f x + g

Can transform globally (almost always) into (generalized) Tate form

[Bershadskya et al],[Katz, Morrison, SSN, Sully]

y2
= x3

+ a1xy + a2x2
+ a3y + a4x + a6

Fiber type encoded in

an = zin bn , bn = O(1)



Tate Algorithm and Tate Forms

Tate Algorithm determines singularity type of an elliptic curve/fibration,
and finds a minimal form of it, i.e. ”canonical form for a singular elliptic
fibration”. Starting point for Tate algorithm: f = ∑i fiz

i and g = ∑i giz
i

⇒ ∆ = 4 f 3
+ 27g2

=

(
4 f 3

0 + 27g2
0

)
+

(
12 f1 f 2

0 + 54g0g1

)
z + O

(
z2

)

• If z does not divide ∆ → smooth I0 fiber

• If z|∆: then there exists u0 such that

f0 = −
1

3
u2

0 + O(z) , g0 =
2

27
u3

0 + O(z)

Shifting (x, y) 7→ (x +
1
3 u0, y) the equation becomes

y2
= x3

+ u0x2
+ ( f1z + f2z2

+ · · · )x + (g1 +
1

3
u0 f1)z + (g2 +

1

3
u0 f2)z2

+ · · ·

which is the Tate form for an I1 singularity. (U(1))



Tate Algorithm and Tate Forms

• If z2|∆

∆ = 4u3
0(g1 +

1

3
u0 f1)z + O(z2) , where (g1 +

1

3
u0 f1) = 0 + O(z2)

so we can set it to zero to leading order and obtain the Tate form for I2 (SU(2))

y2
= x3

+ u0x2
+ ( f1z + f2z2

+ · · · )x + (g2 +
1

3
u0 f2)z2

+ · · ·

• If z3|∆ then

∆ = u2
0

(
4u0

(
(g2 +

1

3
u0 f2)

)
− f 2

1

)
z2

+ O
(

z3
)

Then there exists s0, µ such that

u0 =
1

4
µs2

0 + O(z) , f1 =
1

2
µs0t1 + O(z) .

– If µ|S 6= 0, then u0 has a square root and the resulting singularity can be globally

put into Is
3 Tate form (SU(3)).

– If µ has zeros on S then there is no global change of coordinates to bring it into Tate

form for Ins
3 (Sp(1)) ⇒ generalized Tate form.

• Inductively for all zn|∆



Tate Algorithm and Tate Forms

Can transform Weierstrass globally into (generalized) Tate form

except for SU(m), 6 ≤ m ≤ 9, Sp(n), n = 3,4,, SO(l), l = 13,14

[Katz, Morrison, SS-N, Sully]

y2
= x3

+ a1xy + a2x2
+ a3y + a4x + a6

Fiber type: an = zin bn, with bn = O(1) are given in Tate table:

NB: for outliers we know examples where there is no Tate form, e.g. E6 deformed to A5

y2 −
9

4
t2xy + z2 y = x3

which is already I5 Tate form. Singularity type is I6, so following the Tate alg, require a

non-holomorphic coordinate change.



Type Group a1 a2 a3 a4 a6 ∆

I1 — 0 0 1 1 1 1

I2 SU(2) 0 0 1 1 2 2

Ins
3 Sp(1) 0 0 2 2 3 3

Is
3 SU(3) 0 1 1 2 3 3

Ins
2n Sp(n) 0 0 n n 2n 2n

Is
2n SU(2n) 0 1 n n 2n 2n

Ins
2n+1 Sp(n) 0 0 n + 1 n + 1 2n + 1 2n + 1

Is
2n+1 SU(2n + 1) 0 1 n n + 1 2n + 1 2n + 1

I I I SU(2) 1 1 1 1 2 3

IVns Sp(1) 1 1 1 2 2 4

IVs SU(3) 1 1 1 2 3 4

I∗ns
0 G2 1 1 2 2 3 6

I∗ ss
0 SO(7) 1 1 2 2 4 6

I∗ s
0 SO(8)∗ 1 1 2 2 4 6

I∗ns
1 SO(9) 1 1 2 3 4 7

I∗ s
1 SO(10) 1 1 2 3 5 7

I∗ns
2 SO(11) 1 1 3 3 5 8

I∗ s
2 SO(12)∗ 1 1 3 3 5 8

I∗ns
2n−3 SO(4n + 1) 1 1 n n + 1 2n 2n + 3

I∗ s
2n−3 SO(4n + 2) 1 1 n n + 1 2n + 1 2n + 3

I∗ns
2n−2 SO(4n + 3) 1 1 n + 1 n + 1 2n + 1 2n + 4

I∗ s
2n−2 SO(4n + 4)∗ 1 1 n + 1 n + 1 2n + 1 2n + 4

IV∗ns F4 1 2 2 3 4 8

IV∗ s E6 1 2 2 3 5 8

I I I∗ E7 1 2 3 3 5 9

I I∗ E8 1 2 3 4 5 10

non-min — 1 2 3 4 6 12



Tate Form for SU(5)

Tate form for an SU(5) singularity

PTate : y2
= x3

+ b1xy + b2zx2
+ b3z2y + b4z3x + b6z5

More precisely:

PTate is an equation for a hypersurface in X5 = P
2(O ⊕ K−2

B ⊕ K−3
B ) or P

1,2,3.

Adjunction formula relates canonical bundle of X and Y and normal

bundle NY|X

KY = KX|Y ⊗ NY|X

But PTate is like a local coordinate near Y, so that NY|X = K−1
X |Y, whereby

KY = KX|Y ⊗ K−1
X |Y = O .



Tate Form for SU(5)

y2
= x3

+ b1xy + b2zx2
+ b3z2y + b4z3x + b6z5

and

∆ = z5δ5 + z6δ6 + O(z7)

• bn are sections of bundles over base B3

• bn will in fact encode Higgs bundle data (in a second)

• Given that dimCB3 = 3, we can consider higher codimension

singularities

codim 1 : z = 0

codim 2 : z = b1 = 0

z = (b1(b1b6 − b3b4) + b2b2
3 = 0

codim 3 : z = b1 = b2 = 0

z = b1 = b3 = 0



Higher codimension singularities

Or, what’s the meaning of δ5 and δ6?

⇒ codimension 2 and 3 singularities (in the base)

• Heuristics 1:

At z = δ5 = 0 the SU(5) 7-branes intersects flavor brane δ5 = 0

⇒ Bifundamental Matter

At z = δ5 = δ6 = 0 two flavor branes intersect with the SU(5) 7-branes

⇒ Yukawas

• Heuristics 2:

Setting δ5 = z = 0 or δ5 = δ6 = z = 0 yields a higher rank singularity

⇒ ∆ = O(z6) or O(z7)

⇒ G → SU(5) generating bifundamental matter/Yukawas

Flawed: no Kodaira classification in higher codimension

⇒ Precise picture from Resolution of singularities



Resolution of the SU(5) singularity

[Esole,Yau], [Marsano, SSN], [Lawrie, SSN]

SU(5) Tate model:

y2
= x3

+ b6z5
+ b4z3x + b3z2y + b2zx2

+ b1xy

Discriminant has vanishing order at SGUT

∆ ∼ z5D(bm, z)

Eq is singular along x = y = z = 0.

Why? Tangent space degenerates: ∂x = ∂y = ∂z = 0 at this locus.

• x = y = z = 0 singular locus, i.e. derivatives all vanish

Blowup: Introduce new P
2 defined by ζ1 = 0, and new projective

coordinates [x, y, ζ0]

x → xζ1, y → yζ1, z → ζ0ζ1

⇒ ζ1 = 0 is exceptional divisor



• x = y = ζ1 = 0 singular locus, i.e. derivatives all vanish

Blowup: Introduce new P
2 defined by ζ2 = 0, and new projective

coordinates [x, y, ζ1]

x → xζ2, y → yζ2, ζ1 → ζ1ζ2

⇒ ζ2 = 0 is exceptional divisor

Smooth in codim 1

y(y + b1x + b3ζ1ζ
2
0 ) = ζ1ζ2

(
b6ζ

2
1 ζ5

0 + b2x2ζ0 + b4ζ1xζ3
0 + ζ2x3

)

Read: cf. conifold

yỹ = ζ1ζ2Z

More generally, e.g. SU(2k + 1)

yỹ = ζ1 · · · ζk−1Z



Structure of Resolved CY4: Intuitive stuff

Resolving an SU(5) singularity, we expect 4 new P
1s, which can be fibered

over SGUT and give rise to 4 new divisors in the resolved geometry:

yỹ = ζ1ζ2Z

⇒ 4 exceptional divisors

⇒ D−αi
“Cartan Divisors”

⇒ Irreducible components of ζi = 0

ζi = y = 0 and ζi = ỹ = 0

⇒ D−αi
·D−α j

= Cartan matrix of Â4



Higher codimension

y(y + b1x + b3ζ1ζ
2
0 ) =ζ1ζ2

(
b6ζ

2
1 ζ5

0 + b2x2ζ0 + b4ζ1xζ3
0 + ζ2x3

)

Geometry is still singular in higher codimension e.g. in codimension 2

y = ζ1 = ζ2 = b1 = 0

⇒ Small resolutions (see conifold). E.g.

y → yδ1 , ζ1 → ζ1δ1

where δ1 = 0 describes a P
1

δ1 = 0 : [y, ζ1]

Smooth geometry:

y
(
δ1

(
b3ζ1ζ

2
0 + δ2y

)
+ b1x

)
= ζ1ζ2

(
b2x2ζ0 + δ1ζ1ζ

3
0

(
b6δ1ζ1ζ

2
0 + b4x

)
+ δ2ζ2x3

)

What’s the structure of the fibers in higher codim, e.g. along b1 = 0?



Matter Fibers: naive expectation

Fibers are generically not of ADE type (Kodaira) along higher codim

∆ = δ5z5
+ δ6z6

+ O(z7)



Structure of resolved CY4: Not so intuitive Stuff

[Esole,Yau], [Marsano, SSN], [Lawrie, SSN]

• codimension 2, aka matter: Naively expect SO(10) or SU(6) fibers

⇒ This is confirmed [Marsano, SSN], [Lawrie, SSN] although initially

claimed otherwise [Esole,Yau]

• codimension 3, aka Yukawas: Naively expect SO(12) or E6 fibers

⇒ However, fibers are not Kodaira for E6

⇒ Top Yukawas seem to be in trouble.

In higher codim: no mathematical classification of singular fibers

Constructive proof of fiber types obtained in [Lawrie, SSN]



Structure of resolved CY4: Not so intuitive Stuff, Unriddled

[Marsano, SSN]

y
(
δ1

(
b3ζ1ζ

2
0 + δ2y

)
+ b1x

)
= ζ1ζ2

(
b2x2ζ0 + δ1ζ1ζ

3
0

(
b6δ1ζ1ζ

2
0 + b4x

)
+ δ2ζ2x3

)

Codimension 2:

Cartan divisors split along b1 = 0 (SO(10)) into surfaces S

D−α2

b1·→ S(0,0,−1,0,1) + S(0,1,−1,1,−1)

D−α4
→ S(0,1,0,0,−1) + S(0,1,−1,1,−1) + D−α1

.[b1] ,

Cartan divisors split along P5 = 0 (SU(6))

D−α3
→ S(0,0,1,−1,0) + S(0,0,0,−1,1)

⇒ Fibers in higher codim are Kodaira with correct multiplicities

⇒ splitting into weights of the corresponding representation



Matter Fibers

Along codim 2 enhancement: fibers split into weights of SU(5) representations



Structure of resolved CY4: Not so intuitive Stuff, Unriddled

[Marsano, SSN]

Codimension 3:

At E6 loci b1 = b2 = z = 0 one of the matter surfaces splits further

S(0,1,0,0,−1) −→ Σ(0,1,−1,1,−1) + Σ(0,0,1,−1,0)

⇒ In this case: NOT E6 Kodaira fiber

⇒ But Splitting guarantees existence of 10 × 10 × 5̄ top Yukawa:

5̄ curve becomes reducible and splits into two 10 curves.



Yukawas

Codim 3: curves corresponding to weights split consistent with Yukawas



General resolved ADE singularity

[Lawrie, SSN]

For A2k along z = 0 in a fourfold: After k blowups

y
(

y + b1x + b3ζ
k
0 B(ζ)C(ζ)

)

= ζ1 · · · ζk−1

[
ζ0ζkb2x2

+ x3 A(ζ)ζk
k + b4xζk

0 C(ζ) − b6ζ
2k
0 B(ζ)C(ζ2)

]

• Exceptional divisors ζi = 0, i = 1, · · · k − 1 are reducible

⇒ Resolved in codim 1, yielding affine A2k intersection graph

• Network of small resolutions:

⇒ smooth in codim 2 and 3.



Structure of Fibers for Tate Forms

[Lawrie, SSN]

Consider for instance A2k Tate Form. After resolution, the fiber in

codimension 1 yields the affine A2k Dynkin diagram:

y

ζ0
y y y . . . y y y

ζ1 ζ2 ζ3 ζk−2 ζk−1 ζk

y y y . . . y y y

δ1 δ2 δ3 δk−2 δk−1 δk










J
J

JJ



Splitting of fiber along ”A2k+1” Locus

New fiber components carry charges associated to 2k fundamental

matter.










J
J

JJ

J
J

JJ



















y

y u2k
yt

ζ0
yt yt yt . . . yt yt yt

ζ1 ζ2 ζ3 ζk−2 ζk−1 ζk

yt yt yt . . . yt yt y

δ1 δ2 δ3 δk−2 δk−1 δku2k+1



Splitting of Fiber along ”D2k+1” Locus

New fiber components carry charges associated to Λ22k matter, however

additional degrees of freedom from surface components in fiber.
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ζ0
yt y y . . . y y yJ

J
J

J
J

JJ

J
J

J
J

J
JJ J

J
JJ

J
J

JJ

J
J

J
J

J
JJ

J
J

J
J

J
JJ

ζ1 ζ2 ζ3 ζk−2 ζk−1 ζk

y y y y y . . . y y y y y y vk

y y y y . . . y y yt

v2k δ1 δ2 δ3 δk−2 δk−1 δk



Splitting along ”D2k+2” Yukawa locus

Matter in Λ22k splits to generate 2k ⊗ 2k ⊗ Λ22k Yukawa coupling.
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yt yt yt yt yt . . . yt yt yt yt yt yt vk

yt y y y . . . y y y y

u2k −αk+1



Splitting of Fiber along ”D2k+1” Locus

New fiber components carry charges associated to Λ22k matter.
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ζ1 ζ2 ζ3 ζk−2 ζk−1 ζk

y y y y y . . . y y y y y y vk

y y y y . . . y y yt

v2k δ1 δ2 δ3 δk−2 δk−1 δk



Splitting along ”E” type locus

Matter in Λ22k splits to generate Λ22k ⊗ Λ22k ⊗Λ42k Yukawa coupling.

Definitely not Kodaira fiber. Group theoretic interpretation, and what

additional dofs in gauge theory?
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y w′

vk+2

y y y . . . y y yu2k

yu2k+1

y −αk+1



Summary: higher codimension singularity resolution

• in higher codimension, fibers not necessarily Kodaira type

⇒ Non-Minimal Singularities, what additional degrees of freedom?

• splitting of the roots is precisely of the type, that generates new curve

classes, associated to SU(5) weights

• In codim 3, the splitting is furthermore such that Yukawas are

generated

• Classification of fiber in all codim for ADE Tate forms, generalizing

Kodaira classification in codim 1 [Lawrie, SSN]



Tate Forms and Spectral Covers

[Marsano, Saulina,SS-N], [Marsano, SS-N], [Kuentzler, SS-N]

We’ve discussed local models for 7-branes wrapped on S ×R
1,3

⇒ What’s connection to Tate forms of CY4? How to see C ?

Local limit of (resolved) CY4 Ỹ4 limits to C

y2
= x3

+ b5xy + b4zx2
+ b3z2y + b2z3x + b0z5

Consider the divisor in Y4 (and in resolution Ỹ4)

C spectral : b5xy + b4zx2
+ b3z2y + b2z3x + b0z5

= 0

Limiting behavior close to x = y = z = 0: let t = y/x and take limit

t, z → 0 with z/t = fixed

C spectral → t5
C

where bn|S as coefficients. All the matter and Yukawa points translate

precisely into the higher codimension loci in the CY4.



Additional benefits from resolution: G-flux

G-flux encodes gauge field via (ωi = (1,1) forms)

G4 = dC3 = Fi ∧ ωi

⇒ Key to get chirality

Four-form G4 ∈ H2,2(Y4), with one leg in fiber and satisfy

G ∧ J = 0 , G +
1

2
c2(Y4) ∈ H4(Y4,Z)

Proper quantization requires c2. (2,2) forms are dual to surfaces:

construct G-fluxes from exceptional divisors of resolution

[Marsano, Saulina, SSN], [Grimm, Weigand], [Kuntzler, SSN], [Collinucci, Savelli]



Lecture 4:
Putting all this to use in model building



EXTRA SLIDES: G-flux



Local Model and Spectral Covers

The holomorphic data of the local models of interest comprise:

• SU(N) Higgs bundle on surface S

– Higgs bundle breaks E8 to commutant: SU(5), SO(10), E6

– Specialization to spectral data of Higgs bundle

⇒ ”spectral models”

pHiggs : CHiggs → S

• Non-abelian vector bundle V on S with c1(V) = 0

– Line bundle N Higgs → CHiggs determining V = pHiggs,∗N Higgs

– c1(N Higgs) = γHiggs +
rHiggs

2 so that

pHiggs,∗γHiggs = 0 and r= ramification divisor of pHiggs

⇒ spectral cover flux



Example: Local SU(5) from Spectral Cover

[Donagi,Wijnholt], [Marsano, Saulina, SS-N]

[Hayashi, Kawano, Tatar, Watari]

Higgsing characterized by spectral data of φ

(eigenvalues λi)

E8
〈φ〉
−→ SU(5)GUT ×U(1)4

E8 gauge theory with φ and A varying over S

encoded in spectral cover CHiggs

det(s− φ) = β0s5
+ β2s3

+ β3s2
+ β4s + β5 = 0

where βn = βn(λi) and spectral cover flux

⇒ Local engineering of complete MSSM

[Marsano, Saulina, SS-N]

λ 2
λ 3
λ 4

1λ

λ 5

S
GUT



Spectral cover flux for SU(N)

Realize Spectral Cover in P
1-bundle π : Z = P(O ⊕ KS) → S.

Let σ = hyperplane class of P
1. Consider curves

CHiggs · π
∗Σ and CHiggs · σ

Suitable linear combintations of these are both properly quantized and

satisfy c1 = 0. For example

γ = (Nσ − π∗(ΣN)) · CHiggs

where ΣN =curve at s = 0 in CHiggs.

⇒ CHiggs can be used to construct suitable fluxes

NB: There can be quantization subtleties for N even, e.g. SO(10).



U(1) symmetries and Factored Spectral Cover

[Tatar, Tsuchiya, Watari], [Marsano, Saulina, SS-N]

Phenomenologically: require U(1)s. Realization in spectral cover:

Independent gauged U(1) symmetries are encoded in # factors of CHiggs

U(1) gauge bosons are elements in Cartan subalgebra:

• G = transitive subgroup of S5:

only invariant combination is ∑5
i=1 λi = 0

⇒ no gauged U(1)

• λi in reducible representation of G:

C10 factors into N components ⇒ (N − 1)

gauged U(1)s

⇒ CHiggs = ∏i C i

λ 2
λ 3
λ 4

1λ

λ 5

S
GUT

λ 2
λ 3
λ 4

1λ

λ 5

S
GUT



Global version: Spectral Divisor

[Marsano, Saulina,SS-N], [Marsano, SS-N], [Kuentlzer, SS-N]

A few subtleties:

Firstly: There is in fact a whole family of divisors C spectral . Single out the

one that

• Reduces to spectral divisor CHiggs in the vicinity of S

• Additional U(1): Factored C spectral = C
(m)
spectralC

(n)
spectral



Global version: Spectral Divisor

[Marsano, Saulina,SS-N], [Marsano, SS-N], [Kuentlzer, SS-N]

Secondly: For general SU(N) covers, the Tate form is not the right place to

start, as it will not give rise to the Higgs bundle spectral covers, e.g. for E6

E6 : β6s3
+ β4s − β3 = 0

Define spectral form, which is

G Spectral form of singularity

E7 y2
= x3

+ b4z3x + b6z5

E6 y2
+ b3z2 y = x3

+ b4z3x + b6z5

SO(10) y2
+ b3z2 y = x3

+ b2zx2
+ b4z3x + b6z5

SU(5) y2
+ b1xy + b3z2 y = x3

+ b2zx2
+ b4z3x + b6z5

SO(11) y2
= x3

+ b2zx2
+ b4z3x + b6z5

As usual: Construction checked to be consistent with het/F.



Putting the Spectral Divisor to use: Global G-flux

(2,2) forms in CY4 is dual to a surfaces

⇒ construct G-flux from holomorphic surfaces DG4

Recall: spectral flux from curves dual to γ ∈ H1,1(CHiggs). Likewise

DG4
dual to G4 ∈ H2,2(C spectral)

More precisely: construct DG4
from C spectral from

• Line bundle N spectral → C spectral

• Generalization of ramification divisor L r to map pspectral : C spectral → B3

to construct

G4 = ιspectral,∗

(
c1(N spectral) −

c1(L r)

2

)



Spectral Divisor and G-flux

So – like in the spectral flux case – consider surfaces

SD = C spectral · D , D = divisors in B3

and Sσ defined as containing in the local limit CHiggs · σ.

Again, suitable linear combinations of these give correctly quantized

global G-flux

G =
1

2
(2n + 1)

(
NSσ − S p∗(ΣN)

)

• Direct generalization of local spectral cover fluxes

• Can get a brute force U(1) from factored C spectral

G =

(
nC (m)

spectral − mC (n)
spectral

)
· D − G0 ∼ ω ∧ F for F = U(1) gauge flux

G0 = surface, ensures that G is ⊥ to horizontal and vertical divisors in Y4.



Checks: ”Brute force” G-flux from holomorphic surfaces

From the resolved geometry, the proposal using spectral divisor can be

directly checked.

(2,2) forms in CY4 is dual to holomorphic surfaces

⇒ G-flux from holomorphic surfaces, orthogonal to vertical and

horizontal divisors, i.e. miss surfaces that contain fiber or sit in base

⇒ G-flux from DG4
satifying

DG4
· σglobal · D1 = 0 , DG4

· D1 · D2 = 0

Di= pullbacks of divisors in B

In resolved CY4:

G can be properly quantized from computation of c2(CY4) and DG4

construction from exceptional divisors of resolution.

⇒ reproduce the construction via spectral divisor.


