Tools for String Phenomenology

Sakura Schäfer-Nameki
King's College, London

CERN Winter School, February 4-8, 2013

4 Lectures on String Pheno

Lecture 1: Why?
SUSY GUT settings in String Theory
Lecture 2: How?
Higgs Bundles as the Tool for String Phenomenology
Lecture 3: What exactly?
F-theory as a UV completion of Higgs bundles
Lecture 4: Seriously?!
Complete F-theory models and implications

Lecture 3: What exactly?

F-theory: from Higgs bundles to Geometry

Spectral Covers:
Hayashi, Kawano, Tatar, Watari, Donagi, Wijnholt, Marsano, Saulina, SSN, Weigand...
F-theory:
Vafa, Morrison, Katz, Bershadsky, Sadov, Kachru, ...
F-theory and geometry of elliptic CY4:
Esole, Yau, Marsano, SSN, Weigand, Grimm, Mayrhofer, Kuntzler, Krause, Lawrie,....
F-theory via M-theory:
Vafa, Morrison, Grimm, Hayashi, Cvetic, Klevers, ...

Finally, we need to talk about F-theory

F-theory = non-perturbative Type IIB vacua

- Coupling: complex field $\tau=C_{0}+i e^{-\phi}$
- S-duality of Type IIB $=S L_{2} \mathbb{Z}$ action, e.g. $\tau \rightarrow-1 / \tau$
- [Vafa] Geometrize τ consistent with $S L_{2} \mathbb{Z}$
\Rightarrow Tag on to geometry a T^{2} or elliptic curve, where $\tau=$ complex structure of curve
- 4 dim: compactify on T^{2} fibered Calabi-Yau fourfold Y
$y^{2}=x^{3}+f x+g$

$$
T_{\tau}^{2} \rightarrow Y_{4}
$$

B_{3}

Various ways to reach F-theory

- Non-perturbative IIB theory
- F-theory on K3-fibered CY4 is dual to heterotic on elliptic CY3
- Duality to M-theory: useful approach to learn about effective theory

$$
\begin{gathered}
M / S_{A}^{1} \times S_{B}^{1} \xrightarrow{R_{A} \rightarrow 0} \quad I I A / S_{B}^{1} \quad \xrightarrow{R_{B} \rightarrow 0} \quad I I B \\
R_{A}, R_{B} \rightarrow 0, \quad g_{s}=R_{A} / R_{B}=\text { fixed }
\end{gathered}
$$

More generally: F-theory from M-theory on \mathbb{E}_{τ}
Elliptic curve $\quad \mathbb{E}_{\tau} \sim S_{A}^{1} \times S_{B}^{1}: \quad\left\{\begin{array}{l}\operatorname{Im}(\tau)=g_{s}=\text { fixed } \\ \operatorname{Vol}\left(\mathbb{E}_{\tau}\right) \rightarrow 0\end{array}\right.$

Gauge degrees of freedom/7-branes in F-theory

Gauge degrees of freedom (like in Type IIB) arise from 7-branes:
7-branes in IIB sources $F_{9}: z=$ direction perpendicular to 7-brane

$$
d \star F_{9}=\delta\left(z-z_{0}\right) \quad \Rightarrow \quad \oint_{S^{1}} d C_{0}=1
$$

which has solution locally

$$
\tau(z)=\tau\left(z_{0}\right)+\frac{1}{2 \pi i} \log \left(z-z_{0}\right)+\cdots
$$

- Monodromy: $\tau \rightarrow \tau+1$
- (p, q) 7-branes generalize this to $S L_{2} \mathbb{Z}$ monodromies
- τ diverges at location of 7-brane
$\tau=$ complex structure of elliptic curve
\Rightarrow Location of 7-branes are loci where fiber is singular

Gauge degrees of freedom/7-branes in F-theory

F-theory: realizes branes in terms of geometric singularities
$8 \mathrm{~d} \mathfrak{N}=1$ SYM with gauge groups: $\operatorname{SU}(n), S O(2 n), E_{6,7,8}$

Matter fields geometrically

7-branes inside B_{6} wrapping surfaces, which intersect over a curve Σ :

Yukawa couplings from Triple-Intersections

Yukawa couplings from triple intersection of matter curves:

$$
G_{p} \rightarrow S U(5) \times U(1)_{1} \times U(1)_{2}
$$

Such as

$$
S O(12): \overline{\mathbf{5}}_{H} \times \overline{\mathbf{5}}_{M} \times \mathbf{1 0}_{M} \quad E_{6}: \mathbf{1 0}_{M} \times \mathbf{1 0}_{M} \times \mathbf{5}_{H} \quad \operatorname{SU}(7): \mathbf{5} \times \overline{\mathbf{5}} \times \mathbf{1}
$$

Elliptic curves

Classic theory of elliptic curves over \mathbb{C} :
Weierstrass form: $\quad y^{2}=x^{3}+f x+g$
Geometrically: gives a branched covering over y-plane, with cuts connecting the 3 roots, wlog $0,1, \lambda$ of $x^{3}+f x+g$ and $\infty \Rightarrow$ gives a torus:

Singular elliptic curves

Singular loci arise when two branchpoints collide, "cycle shrinks to 0 size", i.e. roots of

$$
x^{3}+f x+g=(x-a)(x-b)(x-c)
$$

collide, i.e. when $(a-b)=0$ or $(a-c)=0$ or $(b-c)=0$. In terms of f, g :

$$
a+b+c=0, \quad g=-a b c, \quad f=a b+a c+b c
$$

Then $(a-b)^{\left.(a-c)^{(} b-c\right)}=0$ can be rewritten as

$$
\Delta=4 f^{3}+27 g^{2}=0
$$

Singular Elliptic Fibrations

For elliptic fibrations over curves, Kodaira classified all the possible fiber singularities. Generally understood to hold for fibers over higher dimensional spaces in codimension 1.
Fibers characterized by an intersection graph of the resolution \mathbb{P}^{1} s:

Elliptic fibrations

Consider fibrations: $\mathbb{E}_{\tau} \rightarrow B_{3}$, given by a Weierstrass form

$$
y^{2}=x^{3}+f x+g
$$

- f and g are functions on the base B_{3}.
- Let z be a local coordinate on B_{3}
$\Rightarrow z=0$ gives a divisor S in B_{3} (surface), aka $S_{G U T}$
- How to characterize that fiber above S is singular? Let:

$$
f=\sum_{i} f_{i} z^{i}, \quad g=\sum_{i} g_{i} z^{i}
$$

$$
\text { Singular along } z=0: \quad \Delta=4 f^{3}+27 g^{2}=O\left(z^{n}\right)
$$

- $\Delta=0$ as an equation in B_{3} yields a divisor

$$
\Rightarrow \text { singularity in codimension } 1 \text { (one equation in } B_{3} \text {) }
$$

	$\operatorname{ord}_{S}(f)$	$\operatorname{ord}_{S}(g)$	$\operatorname{ord}_{S}(\Delta)$	singularity	local gauge group factor
I_{0}	≥ 0	≥ 0	0	none	-
I_{1}	0	0	1	none	-
I_{2}	0	0	2	A_{1}	$S U(2)$
$I_{m}, m \geq 1$	0	0	m	A_{m-1}	$S p\left(\left[\frac{m}{2}\right]\right)$ or $\operatorname{SU}(m)$
$I I$	≥ 1	1	2	none	-
$I I I$	1	≥ 2	3	A_{1}	$S U(2)$
$I V$	≥ 2	2	4	A_{2}	$S p(1)$ or $S U(3)$
I_{0}^{*}	≥ 2	≥ 3	6	D_{4}	G_{2} or $S O(7)$ or $S O(8)$
$I_{m}^{*}, m \geq 1$	2	3	$m+6$	D_{m+4}	$S O(2 m+7)$ or $S O(2 m+8)$
$I V^{*}$	≥ 3	4	8	E_{6}	F_{4} or E_{6}
$I I I^{*}$	3	≥ 5	9	E_{7}	E_{7}
$I I^{*}$	≥ 4	5	10	E_{8}	E_{8}
non-minimal	≥ 4	≥ 6	≥ 12	non-canonical	-

Kodaira's classification of singular fibers and gauge groups

The powerhouse for F-theory singularities: Tate form

How do we characterize a specific type of singularity?
Starting with Weierstrass form with specific Kodaira singular fiber

$$
y^{2}=x^{3}+f x+g
$$

Can transform globally (almost always) into (generalized) Tate form
[Bershadskya et al],[Katz, Morrison, SSN, Sully]

$$
y^{2}=x^{3}+a_{1} x y+a_{2} x^{2}+a_{3} y+a_{4} x+a_{6}
$$

Fiber type encoded in

$$
a_{n}=z^{i_{n}} b_{n}, \quad b_{n}=O(1)
$$

Tate Algorithm and Tate Forms

Tate Algorithm determines singularity type of an elliptic curve/fibration, and finds a minimal form of it, i.e. "canonical form for a singular elliptic fibration". Starting point for Tate algorithm: $f=\sum_{i} f_{i} z^{i}$ and $g=\sum_{i} g_{i} z^{i}$

$$
\Rightarrow \quad \Delta=4 f^{3}+27 g^{2}=\left(4 f_{0}^{3}+27 g_{0}^{2}\right)+\left(12 f_{1} f_{0}^{2}+54 g_{0} g_{1}\right) z+O\left(z^{2}\right)
$$

- If z does not divide $\Delta \rightarrow$ smooth I_{0} fiber
- If $z \mid \Delta$: then there exists u_{0} such that

$$
f_{0}=-\frac{1}{3} u_{0}^{2}+O(z), \quad g_{0}=\frac{2}{27} u_{0}^{3}+O(z)
$$

Shifting $(x, y) \mapsto\left(x+\frac{1}{3} u_{0}, y\right)$ the equation becomes

$$
y^{2}=x^{3}+u_{0} x^{2}+\left(f_{1} z+f_{2} z^{2}+\cdots\right) x+\left(g_{1}+\frac{1}{3} u_{0} f_{1}\right) z+\left(g_{2}+\frac{1}{3} u_{0} f_{2}\right) z^{2}+\cdots
$$

which is the Tate form for an I_{1} singularity. (U(1))

Tate Algorithm and Tate Forms

- If $z^{2} \mid \Delta$

$$
\Delta=4 u_{0}^{3}\left(g_{1}+\frac{1}{3} u_{0} f_{1}\right) z+O\left(z^{2}\right), \quad \text { where }\left(g_{1}+\frac{1}{3} u_{0} f_{1}\right)=0+O\left(z^{2}\right)
$$

so we can set it to zero to leading order and obtain the Tate form for $I_{2}(\mathrm{SU}(2))$

$$
y^{2}=x^{3}+u_{0} x^{2}+\left(f_{1} z+f_{2} z^{2}+\cdots\right) x+\left(g_{2}+\frac{1}{3} u_{0} f_{2}\right) z^{2}+\cdots
$$

- If $z^{3} \mid \Delta$ then

$$
\Delta=u_{0}^{2}\left(4 u_{0}\left(\left(g_{2}+\frac{1}{3} u_{0} f_{2}\right)\right)-f_{1}^{2}\right) z^{2}+O\left(z^{3}\right)
$$

Then there exists s_{0}, μ such that

$$
u_{0}=\frac{1}{4} \mu s_{0}^{2}+O(z), \quad f_{1}=\frac{1}{2} \mu s_{0} t_{1}+O(z)
$$

- If $\left.\mu\right|_{S} \neq 0$, then u_{0} has a square root and the resulting singularity can be globally put into I_{3}^{s} Tate form (SU(3)).
- If μ has zeros on S then there is no global change of coordinates to bring it into Tate form for $I_{3}^{n s}(S p(1)) \Rightarrow$ generalized Tate form.
- Inductively for all $z^{n} \mid \Delta$

Tate Algorithm and Tate Forms

Can transform Weierstrass globally into (generalized) Tate form except for $S U(m), 6 \leq m \leq 9, S p(n), n=3,4, S O(l), l=13,14$
[Katz, Morrison, SS-N, Sully]

$$
y^{2}=x^{3}+a_{1} x y+a_{2} x^{2}+a_{3} y+a_{4} x+a_{6}
$$

Fiber type: $a_{n}=z^{i_{n}} b_{n}$, with $b_{n}=O(1)$ are given in Tate table:
NB: for outliers we know examples where there is no Tate form, e.g. E_{6} deformed to A_{5}

$$
y^{2}-\frac{9}{4} t^{2} x y+z^{2} y=x^{3}
$$

which is already I_{5} Tate form. Singularity type is I_{6}, so following the Tate alg, require a non-holomorphic coordinate change.

Type	Group	a_{1}	a_{2}	a_{3}	a_{4}	a_{6}	Δ
I_{1}	-	0	0	1	1	1	1
I_{2}	$S U(2)$	0	0	1	1	2	2
$I_{3}^{n s}$	Sp(1)	0	0	2	2	3	3
I_{3}^{S}	$S U(3)$	0	1	1	2	3	3
$I_{2 n}^{n S}$	Sp(n)	0	0	n	n	$2 n$	$2 n$
$I_{2 n}^{S}$	SU(2n)	0	1	n	n	$2 n$	$2 n$
$I_{2 n+1}^{n s}$	Sp(n)	0	0	$n+1$	$n+1$	$2 n+1$	$2 n+1$
$I_{2 n+1}^{S}$	$\operatorname{SUL}(2 n+1)$	0	1	n	$n+1$	$2 n+1$	$2 n+1$
III	$S U(2)$	1	1	1	1	2	3
$I V^{n s}$	Sp(1)	1	1	1	2	2	4
$I V^{S}$	SU(3)	1	1	1	2	3	4
$I_{0}^{* n s}$	G_{2}	1	1	2	2	3	6
$I_{0}^{* S S}$	$S O(7)$	1	1	2	2	4	6
$I_{0}^{* S}$	$S O(8)^{*}$	1	1	2	2	4	6
$I_{1}^{*}{ }^{\text {ns }}$	$S O(9)$	1	1	2	3	4	7
$I_{1}^{* S}$	$S O(10)$	1	1	2	3	5	7
$I_{2}^{* n s}$	$S O(11)$	1	1	3	3	5	8
$I_{2}^{* S}$	$S O(12)^{*}$	1	1	3	3	5	8
$I_{2 n-3}^{*}$	$S O(4 n+1)$	1	1	n	$n+1$	$2 n$	$2 n+3$
$I_{2 n-3}^{* S}$	$S O(4 n+2)$	1	1	n	$n+1$	$2 n+1$	$2 n+3$
$I_{2 n-2}^{*}$	$S O(4 n+3)$	1	1	$n+1$	$n+1$	$2 n+1$	$2 n+4$
$I_{2 n-2}^{* S}$	$S O(4 n+4)^{*}$	1	1	$n+1$	$n+1$	$2 n+1$	$2 n+4$
$I V^{*} n s$	F_{4}	1	2	2	3	4	8
$I V^{* S}$	E_{6}	1	2	2	3	5	8
$I I I^{*}$	E_{7}	1	2	3	3	5	9
$I I^{*}$	E_{8}	1	2	3	4	5	10
non-min	-	1	2	3	4	6	12

Tate Form for $S U(5)$

Tate form for an $\operatorname{SU}(5)$ singularity

$$
P_{\text {Tate }}: \quad y^{2}=x^{3}+b_{1} x y+b_{2} z x^{2}+b_{3} z^{2} y+b_{4} z^{3} x+b_{6} z^{5}
$$

More precisely:
$P_{\text {Tate }}$ is an equation for a hypersurface in $X_{5}=\mathbb{P}^{2}\left(O \oplus K_{B}^{-2} \oplus K_{B}^{-3}\right)$ or $\mathbb{P}^{1,2,3}$.
Adjunction formula relates canonical bundle of X and Y and normal bundle $N_{Y \mid X}$

$$
K_{Y}=\left.K_{X}\right|_{Y} \otimes N_{Y \mid X}
$$

But $P_{\text {Tate }}$ is like a local coordinate near Y, so that $N_{Y \mid X}=\left.K_{X}^{-1}\right|_{Y}$, whereby

$$
K_{Y}=\left.\left.K_{X}\right|_{Y} \otimes K_{X}^{-1}\right|_{Y}=0
$$

Tate Form for $\operatorname{SU(5)}$

$$
y^{2}=x^{3}+b_{1} x y+b_{2} z x^{2}+b_{3} z^{2} y+b_{4} z^{3} x+b_{6} z^{5}
$$

and

$$
\Delta=z^{5} \delta_{5}+z^{6} \delta_{6}+O\left(z^{7}\right)
$$

- b_{n} are sections of bundles over base B_{3}
- b_{n} will in fact encode Higgs bundle data (in a second)
- Given that $\operatorname{dim}_{\mathbb{C}} B_{3}=3$, we can consider higher codimension singularities

$$
\begin{array}{ll}
\operatorname{codim} 1: & z=0 \\
\operatorname{codim} 2: & z=b_{1}=0 \\
& z=\left(b_{1}\left(b_{1} b_{6}-b_{3} b_{4}\right)+b_{2} b_{3}^{2}=0\right. \\
\text { codim 3: } & z=b_{1}=b_{2}=0 \\
& z=b_{1}=b_{3}=0
\end{array}
$$

Higher codimension singularities

Or, what's the meaning of δ_{5} and δ_{6} ?
\Rightarrow codimension 2 and 3 singularities (in the base)

- Heuristics 1:

At $z=\delta_{5}=0$ the $S U(5) 7$-branes intersects flavor brane $\delta_{5}=0$
\Rightarrow Bifundamental Matter
At $z=\delta_{5}=\delta_{6}=0$ two flavor branes intersect with the $\operatorname{SU}(5) 7$-branes \Rightarrow Yukawas

- Heuristics 2:

Setting $\delta_{5}=z=0$ or $\delta_{5}=\delta_{6}=z=0$ yields a higher rank singularity
$\Rightarrow \Delta=O\left(z^{6}\right)$ or $O\left(z^{7}\right)$
$\Rightarrow G \rightarrow S U(5)$ generating bifundamental matter/Yukawas
Flawed: no Kodaira classification in higher codimension
\Rightarrow Precise picture from Resolution of singularities

Resolution of the $S U(5)$ singularity

[Esole,Yau], [Marsano, SSN], [Lawrie, SSN]
SU(5) Tate model:

$$
y^{2}=x^{3}+b_{6} z^{5}+b_{4} z^{3} x+b_{3} z^{2} y+b_{2} z x^{2}+b_{1} x y
$$

Discriminant has vanishing order at $S_{\text {GUT }}$

$$
\Delta \sim z^{5} D\left(b_{m}, z\right)
$$

Eq is singular along $x=y=z=0$.
Why? Tangent space degenerates: $\partial_{x}=\partial_{y}=\partial_{z}=0$ at this locus.

- $x=y=z=0$ singular locus, i.e. derivatives all vanish Blowup: Introduce new \mathbb{P}^{2} defined by $\zeta_{1}=0$, and new projective coordinates $\left[x, y, \zeta_{0}\right]$

$$
x \rightarrow x \zeta_{1}, \quad y \rightarrow y \zeta_{1}, \quad z \rightarrow \zeta_{0} \zeta_{1}
$$

$\Rightarrow \zeta_{1}=0$ is exceptional divisor

- $x=y=\zeta_{1}=0$ singular locus, i.e. derivatives all vanish Blowup: Introduce new \mathbb{P}^{2} defined by $\zeta_{2}=0$, and new projective coordinates $\left[x, y, \zeta_{1}\right]$

$$
x \rightarrow x \zeta_{2}, \quad y \rightarrow y \zeta_{2}, \quad \zeta_{1} \rightarrow \zeta_{1} \zeta_{2}
$$

$\Rightarrow \zeta_{2}=0$ is exceptional divisor
Smooth in codim 1

$$
y\left(y+b_{1} x+b_{3} \zeta_{1} \zeta_{0}^{2}\right)=\zeta_{1} \zeta_{2}\left(b_{6} \zeta_{1}^{2} \zeta_{0}^{5}+b_{2} x^{2} \zeta_{0}+b_{4} \zeta_{1} x \zeta_{0}^{3}+\zeta_{2} x^{3}\right)
$$

Read: cf. conifold

$$
y \tilde{y}=\zeta_{1} \zeta_{2} Z
$$

More generally, e.g. $S U(2 k+1)$

$$
y \tilde{y}=\zeta_{1} \cdots \zeta_{k-1} Z
$$

Structure of Resolved CY4: Intuitive stuff

Resolving an $S U(5)$ singularity, we expect 4 new $\mathbb{P}^{1} s$, which can be fibered over $S_{\text {GUT }}$ and give rise to 4 new divisors in the resolved geometry:

$$
y \tilde{y}=\zeta_{1} \zeta_{2} Z
$$

$\Rightarrow 4$ exceptional divisors
$\Rightarrow \mathcal{D}_{-\alpha_{i}}$ "Cartan Divisors"
\Rightarrow Irreducible components of $\zeta_{i}=0$
$\zeta_{i}=y=0$ and $\zeta_{i}=\tilde{y}=0$
$\Rightarrow \mathcal{D}_{-\alpha_{i}} \cdot \mathcal{D}_{-\alpha_{j}}$
$=$ Cartan matrix of $\widehat{A_{4}}$

Higher codimension

$$
y\left(y+b_{1} x+b_{3} \zeta_{1} \zeta_{0}^{2}\right)=\zeta_{1} \zeta_{2}\left(b_{6} \zeta_{1}^{2} \zeta_{0}^{5}+b_{2} x^{2} \zeta_{0}+b_{4} \zeta_{1} x \zeta_{0}^{3}+\zeta_{2} x^{3}\right)
$$

Geometry is still singular in higher codimension e.g. in codimension 2

$$
y=\zeta_{1}=\zeta_{2}=b_{1}=0
$$

\Rightarrow Small resolutions (see conifold). E.g.

$$
y \rightarrow y \delta_{1}, \quad \zeta_{1} \rightarrow \zeta_{1} \delta_{1}
$$

where $\delta_{1}=0$ describes a \mathbb{P}^{1}

$$
\delta_{1}=0: \quad\left[y, \zeta_{1}\right]
$$

Smooth geometry:
$y\left(\delta_{1}\left(b_{3} \zeta_{1} \zeta_{0}^{2}+\delta_{2} y\right)+b_{1} x\right)=\zeta_{1} \zeta_{2}\left(b_{2} x^{2} \zeta_{0}+\delta_{1} \zeta_{1} \zeta_{0}^{3}\left(b_{6} \delta_{1} \zeta_{1} \zeta_{0}^{2}+b_{4} x\right)+\delta_{2} \zeta_{2} x^{3}\right)$
What's the structure of the fibers in higher codim, e.g. along $b_{1}=0$?

Matter Fibers: naive expectation

Fibers are generically not of ADE type (Kodaira) along higher codim

$$
\Delta=\delta_{5} z^{5}+\delta_{6} z^{6}+O\left(z^{7}\right)
$$

Structure of resolved CY4: Not so intuitive Stuff

[Esole,Yau], [Marsano, SSN], [Lawrie, SSN]

- codimension 2, aka matter: Naively expect $S O(10)$ or $S U(6)$ fibers \Rightarrow This is confirmed [Marsano, SSN], [Lawrie, SSN] although initially claimed otherwise

```
[Esole,Yau]
```

- codimension 3, aka Yukawas: Naively expect $S O(12)$ or E_{6} fibers \Rightarrow However, fibers are not Kodaira for E_{6} \Rightarrow Top Yukawas seem to be in trouble.

In higher codim: no mathematical classification of singular fibers
Constructive proof of fiber types obtained in

Structure of resolved CY4: Not so intuitive Stuff, Unriddled

[Marsano, SSN]
$y\left(\delta_{1}\left(b_{3} \zeta_{1} \zeta_{0}^{2}+\delta_{2} y\right)+b_{1} x\right)=\zeta_{1} \zeta_{2}\left(b_{2} x^{2} \zeta_{0}+\delta_{1} \zeta_{1} \zeta_{0}^{3}\left(b_{6} \delta_{1} \zeta_{1} \zeta_{0}^{2}+b_{4} x\right)+\delta_{2} \zeta_{2} x^{3}\right)$
Codimension 2:
Cartan divisors split along $b_{1}=0(\mathrm{SO}(10))$ into surfaces S

$$
\begin{aligned}
& D_{-\alpha_{2}} \xrightarrow{b_{1} ;} S_{(0,0,-1,0,1)}+S_{(0,1,-1,1,-1)} \\
& D_{-\alpha_{4}} \rightarrow S_{(0,1,0,0,-1)}+S_{(0,1,-1,1,-1)}+D_{-\alpha_{1}} \cdot\left[b_{1}\right],
\end{aligned}
$$

Cartan divisors split along $P_{5}=0(\mathrm{SU}(6))$

$$
D_{-\alpha_{3}} \rightarrow S_{(0,0,1,-1,0)}+S_{(0,0,0,-1,1)}
$$

\Rightarrow Fibers in higher codim are Kodaira with correct multiplicities
\Rightarrow splitting into weights of the corresponding representation

Matter Fibers

Structure of resolved CY4: Not so intuitive Stuff, Unriddled

[Marsano, SSN]

Codimension 3:
At E_{6} loci $b_{1}=b_{2}=z=0$ one of the matter surfaces splits further

$$
S_{(0,1,0,0,-1)} \quad \longrightarrow \quad \Sigma_{(0,1,-1,1,-1)}+\Sigma_{(0,0,1,-1,0)}
$$

\Rightarrow In this case: NOT E_{6} Kodaira fiber
\Rightarrow But Splitting guarantees existence of $10 \times 10 \times \overline{5}$ top Yukawa:

$$
\overline{5} \text { curve becomes reducible and splits into two } 10 \text { curves. }
$$

Yukawas

Codim 3: curves corresponding to weights split consistent with Yukawas

General resolved ADE singularity

[Lawrie, SSN]
For $A_{2 k}$ along $z=0$ in a fourfold: After k blowups

$$
\begin{aligned}
y(y & \left.+b_{1} x+b_{3} \zeta_{0}^{k} B(\zeta) C(\zeta)\right) \\
& =\zeta_{1} \cdots \zeta_{k-1}\left[\zeta_{0} \zeta_{k} b_{2} x^{2}+x^{3} A(\zeta) \zeta_{k}^{k}+b_{4} x \zeta_{0}^{k} C(\zeta)-b_{6} \zeta_{0}^{2 k} B(\zeta) C\left(\zeta^{2}\right)\right]
\end{aligned}
$$

- Exceptional divisors $\zeta_{i}=0, i=1, \cdots k-1$ are reducible
\Rightarrow Resolved in codim 1, yielding affine $A_{2 k}$ intersection graph
- Network of small resolutions:
\Rightarrow smooth in codim 2 and 3 .

Structure of Fibers for Tate Forms

[Lawrie, SSN]

Consider for instance $A_{2 k}$ Tate Form. After resolution, the fiber in codimension 1 yields the affine $A_{2 k}$ Dynkin diagram:

Splitting of fiber along " $A_{2 k+1}$ " Locus

New fiber components carry charges associated to $\mathbf{2 k}$ fundamental matter.

Splitting of Fiber along " $D_{2 k+1}$ " Locus

New fiber components carry charges associated to $\Lambda^{2} 2 \mathbf{k}$ matter, however additional degrees of freedom from surface components in fiber.

Splitting along " $D_{2 k+2}$ " Yukawa locus

Matter in $\Lambda^{2} \mathbf{2 k}$ splits to generate $\overline{\mathbf{2 k}} \otimes \overline{\mathbf{2 k}} \otimes \Lambda^{2} \mathbf{2 k}$ Yukawa coupling.

Splitting of Fiber along " $D_{2 k+1}$ " Locus

New fiber components carry charges associated to $\Lambda^{2} \mathbf{2 k}$ matter.

Splitting along "E" type locus

Matter in $\Lambda^{2} \mathbf{2 k}$ splits to generate $\overline{\Lambda^{2} \mathbf{2 k}} \otimes \overline{\Lambda^{2} \mathbf{2 k}} \otimes \Lambda^{4} \mathbf{2 k}$ Yukawa coupling. Definitely not Kodaira fiber. Group theoretic interpretation, and what additional dofs in gauge theory?

Summary: higher codimension singularity resolution

- in higher codimension, fibers not necessarily Kodaira type
\Rightarrow Non-Minimal Singularities, what additional degrees of freedom?
- splitting of the roots is precisely of the type, that generates new curve classes, associated to $\operatorname{SU(5)}$ weights
- In codim 3, the splitting is furthermore such that Yukawas are generated
- Classification of fiber in all codim for ADE Tate forms, generalizing Kodaira classification in codim 1

Tate Forms and Spectral Covers

[Marsano, Saulina,SS-N], [Marsano, SS-N], [Kuentzler, SS-N]
We've discussed local models for 7-branes wrapped on $S \times \mathbb{R}^{1,3}$
\Rightarrow What's connection to Tate forms of CY4? How to see c ?
Local limit of (resolved) CY4 \tilde{Y}_{4} limits to C

$$
y^{2}=x^{3}+b_{5} x y+b_{4} z x^{2}+b_{3} z^{2} y+b_{2} z^{3} x+b_{0} z^{5}
$$

Consider the divisor in Y_{4} (and in resolution \tilde{Y}_{4})

$$
\mathcal{C}_{\text {spectral }}: \quad b_{5} x y+b_{4} z x^{2}+b_{3} z^{2} y+b_{2} z^{3} x+b_{0} z^{5}=0
$$

Limiting behavior close to $x=y=z=0$: let $t=y / x$ and take limit $t, z \rightarrow 0$ with $z / t=$ fixed

$$
C_{\text {spectral }} \quad \rightarrow \quad t^{5} \mathrm{C}
$$

where $\left.b_{n}\right|_{S}$ as coefficients. All the matter and Yukawa points translate precisely into the higher codimension loci in the CY4.

Additional benefits from resolution: G-flux

G-flux encodes gauge field via ($\omega_{i}=(1,1)$ forms $)$

$$
G_{4}=d C_{3}=F_{i} \wedge \omega_{i}
$$

\Rightarrow Key to get chirality
Four-form $G_{4} \in H^{2,2}\left(Y_{4}\right)$, with one leg in fiber and satisfy

$$
G \wedge J=0, \quad G+\frac{1}{2} c_{2}\left(Y_{4}\right) \in H^{4}\left(Y_{4}, \mathbb{Z}\right)
$$

Proper quantization requires c_{2}. $(2,2)$ forms are dual to surfaces: construct G-fluxes from exceptional divisors of resolution
[Marsano, Saulina, SSN], [Grimm, Weigand], [Kuntzler, SSN], [Collinucci, Savelli]

Lecture 4:
 Putting all this to use in model building

EXTRA SLIDES: G-flux

Local Model and Spectral Covers

The holomorphic data of the local models of interest comprise:

- $\operatorname{SU}(N)$ Higgs bundle on surface S
- Higgs bundle breaks E_{8} to commutant: $S U(5), S O(10), E_{6}$
- Specialization to spectral data of Higgs bundle \Rightarrow "spectral models"

$$
p_{\text {Higgs }}: \quad \mathcal{C}_{\text {Higgs }} \rightarrow S
$$

- Non-abelian vector bundle V on S with $c_{1}(V)=0$
- Line bundle $\mathcal{N}_{\text {Higgs }} \rightarrow \mathcal{C}_{\text {Higgs }}$ determining $V=p_{\text {Higgs,* }} \mathcal{N}_{\text {Higgs }}$
$-c_{1}\left(\mathcal{N}_{\text {Higgs }}\right)=\gamma_{\text {Higgs }}+\frac{r_{\text {Higgs }}}{2}$ so that $p_{\text {Higgs,*}} \gamma_{\text {Higgs }}=0$ and $r=$ ramification divisor of $p_{\text {Higgs }}$ \Rightarrow spectral cover flux

Example: Local SU(5) from Spectral Cover

[Donagi,Wijnholt], [Marsano, Saulina, SS-N]
[Hayashi, Kawano, Tatar, Watari]

Higgsing characterized by spectral data of ϕ (eigenvalues λ_{i})

$$
E_{8} \xrightarrow{\langle\phi\rangle} S U(5)_{\mathrm{GUT}} \times U(1)^{4}
$$

E_{8} gauge theory with ϕ and A varying over S encoded in spectral cover $\mathcal{C}_{\text {Higgs }}$

$\operatorname{det}(s-\phi)=\beta_{0} s^{5}+\beta_{2} s^{3}+\beta_{3} s^{2}+\beta_{4} s+\beta_{5}=0$
where $\beta_{n}=\beta_{n}\left(\lambda_{i}\right)$ and spectral cover flux
 \Rightarrow Local engineering of complete MSSM

Spectral cover flux for $\operatorname{SU(N)}$

Realize Spectral Cover in \mathbb{P}^{1}-bundle $\pi: Z=\mathbb{P}\left(O \oplus K_{S}\right) \rightarrow S$. Let $\sigma=$ hyperplane class of \mathbb{P}^{1}. Consider curves

$$
\mathcal{C}_{\text {Higgs }} \cdot \pi^{*} \Sigma \quad \text { and } \quad \mathcal{C}_{\text {Higgs }} \cdot \sigma
$$

Suitable linear combintations of these are both properly quantized and satisfy $c_{1}=0$. For example

$$
\gamma=\left(N \sigma-\pi^{*}\left(\Sigma_{N}\right)\right) \cdot \mathcal{C}_{H i g g s}
$$

where $\Sigma_{N}=$ curve at $s=0$ in $\mathcal{C}_{\text {Higgs }}$.
$\Rightarrow \mathcal{C}_{\text {Higgs }}$ can be used to construct suitable fluxes

NB: There can be quantization subtleties for N even, e.g. $S O(10)$.

$U(1)$ symmetries and Factored Spectral Cover

[Tatar, Tsuchiya, Watari], [Marsano, Saulina, SS-N]

Phenomenologically: require $U(1) \mathrm{s}$. Realization in spectral cover:
Independent gauged $U(1)$ symmetries are encoded in \# factors of $\mathcal{C}_{\text {Higgs }}$
$U(1)$ gauge bosons are elements in Cartan subalgebra:

- $G=$ transitive subgroup of S_{5} : only invariant combination is $\sum_{i=1}^{5} \lambda_{i}=0$
\Rightarrow no gauged $U(1)$

- λ_{i} in reducible representation of G :
\mathcal{C}_{10} factors into N components $\Rightarrow(N-1)$
gauged $U(1) \mathrm{s}$
$\Rightarrow C_{\text {Higgs }}=\prod_{i} C_{i}$

Global version: Spectral Divisor

```
[Marsano, Saulina,SS-N], [Marsano, SS-N], [Kuentlzer, SS-N]
```

A few subtleties:
Firstly: There is in fact a whole family of divisors $\mathcal{C}_{\text {spectral }}$. Single out the one that

- Reduces to spectral divisor $\mathcal{C}_{\text {Higgs }}$ in the vicinity of S
- Additional $U(1)$: Factored $C_{\text {spectral }}=C_{\text {spectral }}^{(m)} C_{\text {spectral }}^{(n)}$

Global version: Spectral Divisor

[Marsano, Saulina,SS-N], [Marsano, SS-N], [Kuentlzer, SS-N]

Secondly: For general $S U(N)$ covers, the Tate form is not the right place to start, as it will not give rise to the Higgs bundle spectral covers, e.g. for E_{6}

$$
E_{6}: \quad \beta_{6} S^{3}+\beta_{4} s-\beta_{3}=0
$$

Define spectral form, which is

G	Spectral form	of singularity
E_{7}	y^{2}	$=x^{3}+b_{4} z^{3} x+b_{6} z^{5}$
E_{6}	$y^{2}+b_{3} z^{2} y$	$=x^{3}+b_{4} z^{3} x+b_{6} z^{5}$
$S O(10)$	$y^{2}+b_{3} z^{2} y$	$=x^{3}+b_{2} z x^{2}+b_{4} z^{3} x+b_{6} z^{5}$
$S U(5)$	$y^{2}+b_{1} x y+b_{3} z^{2} y$	$=x^{3}+b_{2} z x^{2}+b_{4} z^{3} x+b_{6} z^{5}$
$S O(11)$	y^{2}	$=x^{3}+b_{2} z x^{2}+b_{4} z^{3} x+b_{6} z^{5}$

As usual: Construction checked to be consistent with het/F.

Putting the Spectral Divisor to use: Global G-flux

$(2,2)$ forms in CY4 is dual to a surfaces
\Rightarrow construct G-flux from holomorphic surfaces $D_{G_{4}}$
Recall: spectral flux from curves dual to $\gamma \in H^{1,1}\left(\mathcal{C}_{\text {Higgs }}\right)$. Likewise

$$
D_{G_{4}} \quad \text { dual to } \quad G_{4} \in H^{2,2}\left(C_{\text {spectral }}\right)
$$

More precisely: construct $D_{G_{4}}$ from $\mathcal{C}_{\text {spectral }}$ from

- Line bundle $\mathcal{N}_{\text {spectral }} \rightarrow \mathcal{C}_{\text {spectral }}$
- Generalization of ramification divisor \mathcal{L}_{r} to map $p_{\text {spectral }}: \mathcal{C}_{\text {spectral }} \rightarrow B_{3}$ to construct

$$
G_{4}=\iota_{\text {spectral }, *}\left(c_{1}\left(\mathcal{N}_{\text {spectral }}\right)-\frac{c_{1}\left(L_{r}\right)}{2}\right)
$$

Spectral Divisor and G-flux

So - like in the spectral flux case - consider surfaces

$$
\mathcal{S}_{D}=\mathcal{C}_{\text {spectral }} \cdot D, \quad D=\text { divisors in } B_{3}
$$

and S_{σ} defined as containing in the local limit $\mathcal{C}_{\text {Higgs }} \cdot \sigma$.
Again, suitable linear combinations of these give correctly quantized global G-flux

$$
G=\frac{1}{2}(2 n+1)\left(N S_{\sigma}-S_{p^{*}\left(\Sigma_{N}\right)}\right)
$$

- Direct generalization of local spectral cover fluxes
- Can get a brute force $U(1)$ from factored $\mathcal{C}_{\text {spectral }}$

$$
\begin{aligned}
& G=\left(n C_{\text {spectral }}^{(m)}-m C_{\text {spectral }}^{(n)}\right) \cdot D-G_{0} \sim \omega \wedge F \quad \text { for } F=U(1) \text { gauge flux } \\
& G_{0}=\text { surface, ensures that } G \text { is } \perp \text { to horizontal and vertical divisors in } Y_{4} .
\end{aligned}
$$

Checks: "Brute force" G-flux from holomorphic surfaces

From the resolved geometry, the proposal using spectral divisor can be directly checked.
$(2,2)$ forms in CY4 is dual to holomorphic surfaces
\Rightarrow G-flux from holomorphic surfaces, orthogonal to vertical and horizontal divisors, i.e. miss surfaces that contain fiber or sit in base \Rightarrow G-flux from $D_{G_{4}}$ satifying

$$
D_{G_{4}} \cdot \sigma_{\text {global }} \cdot D_{1}=0, \quad D_{G_{4}} \cdot D_{1} \cdot D_{2}=0
$$

$D_{i}=$ pullbacks of divisors in B
In resolved CY4:
G can be properly quantized from computation of $c_{2}(\mathrm{CY} 4)$ and $D_{G_{4}}$ construction from exceptional divisors of resolution.
\Rightarrow reproduce the construction via spectral divisor.

