NRC-8, EuCheMS International Conference on Nuclear and Radiochemistry

Contribution ID: 192

Type: Oral Communications

ORAL PRESENTATION - Production of Four Terbium Radioisotopes for Radiopharmaceutical Applications

Monday 17 September 2012 15:55 (15 minutes)

Introduction: Terbium provides 4 radioisotopes, which are suitable for different diagnostic or therapeutic applications in nuclear medicine. These are ¹⁴⁹Tb (T_{$\frac{1}{2}$} 4.1 h, E_{α} 3.97 MeV, I_{α} 16.7 %) for α -radionuclide therapy, ¹⁵²Tb (T_{$\frac{1}{2}$} 17.5 h, E_{β}+_{,av} 1.08 MeV, I_{β +} 17 %) for PET, ¹⁵⁵Tb (T_{$\frac{1}{2}$} 5.3 d, E_{γ} 86.6/105 keV) for SPECT and ¹⁶¹Tb (T_{$\frac{1}{2}$} 6.9 d, E_{β}-_{,av} 0.154 MeV) for β <sup>-radionuclide therapy. ¹⁶¹Tb is similar to the clinically employed radiolanthanide ¹⁷⁷Lu, but emits in addition a number of conversion- and Auger-electrons.

Aim: The production of the four radionuclides should be established in a quality, which is suitable for radiolabeling of biomolecules.

Method: Neutron-deficient ¹⁴⁹Tb, ¹⁵²Tb, and ¹⁵⁵Tb were produced at ISOLDE(CERN) by spallation reactions using 1.4 GeV protons onto a 50 g/cm² thick tantalum target followed by online mass separation and deposition onto carrier foils.

¹⁶¹Tb was obtained from neutron irradiation of highly enriched ¹⁶⁰Gd targets at the high flux reactor of ILL, Grenoble or spallation neutron source SINQ, PSI.

Chemical separation of Tb radioisotopes was accomplished by cation exchange chromatography using the complexing agent α -hydroxyiso-butyric acid (α -HIBA).

Results: 6 MBq ¹⁴⁹Tb, 18 MBq ¹⁵²Tb and 9 MBq ¹⁵⁵Tb were obtained in \leq 1 mL 0.15 M α -hydroxyisobutyrate solution.

Up to 10 GBq ¹⁶¹Tb were produced from irradiated ¹⁶⁰Gd targets and obtained in 300 μ L 0.05 M HCl.

Radiolabeling of a novel DOTA-folate conjugate was performed with > 96 % yield at Tb:DOTA-folate molar ratios 1: 59000 (¹⁴⁹Tb), 1: 5500 (¹⁵²Tb), 1: 700 (¹⁵⁵Tb) and 1:17 (¹⁶¹Tb).

 $\label{eq:substant} Radiolabeling of DOTATATE was performed with > 99\,\% yield at < sup > 161 < /sup > Tb:DOTA-Tyr < sup > 3 < /sup > octreotate molar ratios <math display="inline">\ge$ 1:6.

Conclusion: Successful production of the Tb-radioisotopes enabled synthesis of radiolabeled DOTA-folate conjugates and their evaluation in an in vivo study.

Test radiolabeling of DOTATATE confirmed the high specific activity of the obtained ¹⁶¹Tb.

Author: Mr DORRER, Holger (Paul Scherrer Institut, Villigen-PSI, Switzerland & University of Bern, Berne, Switzerland)

Co-authors: Prof. TÜRLER, Andreas (Paul Scherrer Institut, Villigen-PSI, Switzerland & University of Bern, Berne, Switzerland); Dr MÜLLER, Cristina (Paul Scherrer Institut, Villigen-PSI, Switzerland); Dr JOHNSTON, Karl (ISOLDE, CERN, Geneva, Switzerland); Dr ZHERNOSEKOV, Konstantin (Isotope Technologies Garching GmbH, Garching, Germany); Dr BÉHÉ, Martin (Paul Scherrer Institut, Villigen-PSI, Switzerland); Prof. SCHIBLI, Roger (Paul Scherrer Institut, Villigen-PSI, Switzerland & Swiss Federal Institut of Technology, Zürich, Switzerland); Dr KÖSTER, Ulli (Institut Laue-Langevin, Grenoble, France) **Presenter:** Mr DORRER, Holger (Paul Scherrer Institut, Villigen-PSI, Switzerland & University of Bern, Berne, Switzerland)

Session Classification: Session 2 (cn't of Session 1) - Radiopharmaceutical Chemistry (radiodiagnostics, radiotherapy, theragnostics)

Track Classification: Radiopharmaceutical chemistry, radiodiagnostics, radiotherapy, theragnostics