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Standard picture of the phase diagram and its uncertainties
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physical quark masses: important for the nature of the transition
np=2+1 theory with m,=0 or « gives a first order transition
for intermediate quark masses we have an analytic cross over (no ¥PT)

A

F. Karsch et al., Nucl. Phys. Proc. 129 (2004) 614; Lattice’07 G. Endrodi, O. Philipsen

continuum limit is important for the order of the transition:;

np=3 case (standard action, N;=4): critical m,s~=300 MeV

with different discretization error (p4 action, N;=4). critical m ;=70 MeV
the physical pseudoscalar mass is just between these two values

what happens for physical quark masses, in the continuum, at what 7.7
N;=4,6,8,10 lattices correspond to ¢= 0.3 fm, 0.2fm, 0.15fm, 0.12 fm
CPU: =~ N (thermodynamics): N;=10 needs 50-times more than N;=6



Partition function
Z= / dUdWPdVe °E
Sg is the Euclidean action
Parameters;
gauge coupling g
quark masses m; (i = 1..Ny)

(Chemical potentials g; )
Volume (V) and temperature (T')

Finite T« finite temporal lattice extension

Continuum limit: a — 0
Renormalization: keep the physical spectrum constant
at finite T':
continuum limit & N, — =
CPU grows like N3, thus N,=10 instead of N;=6 needs 50-100x more CPU









Overlap improving multi-parameter reweighting

Z. Fodor and S.D. Katz, Phys. Lett. B534 (2002) 87
Ay, B = / DU exp|—So(B,U)] det M(m, j1,U) =
[ U expl—Sy(Bo, )| det Mo, 1 = 0,0)

det M (m, 1, U)
p|—So(B,U) +S5.(Bo, U
{exp[ g(B, ) +Sg(Po, )]deUW(moaﬂ_O?U)}

first line = measure, field configurations of the Monte-Carlo
curly bracket = can be measured on each configuration, weight

simultaneously changing several parameters; better overlap
e.qg. transition configurations are mapped to transition ones

expectation value of an observable O;

_ Yw(B,p,m)O(u,m)
Y w(B,p,m)

<0>ﬁ,‘u,m

observables to get the transition points at © #£0 (susceptibilities)



Comparison with the Glasgow method
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“ transition line
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one parameter reweighting New method
single parameter () two parameters (¢ and )
purely hadronic transition configurations

configurations



i #£0 multi-parameter reweighting with Taylor expansion

C.R. Allton et al., Phys. Rev. D66 074507,02, D68 014507,03

Zm 1, B) = [ DU expl—Sy(B,U)] detM(m, p,U) =
/ DU expl—Sg(Bo, )| det Mmo, p = 0, 1)

| dEtM{m-#ﬁtf)
3 —X jU —|—S ':U J
{e*cp[ g(B,U) +S¢(Po )]det M(mo,p =0,U )}

instead of evaulating determinants expand them in (& or exp{ut):

" (detM(;.L ) Z p'o ]ndetM(O Z Ry

det M(0)

faster than the complete evaluation of the determinants
only valid for somewhat smaller i values than the full technique



QCD phase diagram from imaginary chemical potential

PdeForcrand, O.Philipsen, Nucl. Phys. B642 290,02, B673 170, '03
M.D’Elia, M.P.Lombardo, Phys. Rev. D67 014505,03

fermion determinant: real for imaginary chemical potential (yt7)
= no sign problem, no need for reweighting

directly obtain the (B.,u) transition line
analytically continue it to get the physical (8.,u) line

transition line (Be, ;) is given by the susceptibility-peak
X =VN(&—(0))%), dx/ap=0  3%/ap2<0

on finite V the analytic ¥ (u;, ) can be measured
using the implicitely given B.(yy) one gets

3Pe/Ip = —idPe/ Iy



Density of states (DOS) method

Constrained simulations:

Force some observable to have a given value

this way configurations with all values of the observable present
overlap problem not so serious

For any observable:

<0>= [do (OfW)ep(@) [ [ ds (FO)) (=)

g, the density of states is the constrained partition function
for some observable ¢

p(®) = Zy(x) = [ DU (V) 6(6 — ).

Possible choices for ¢:

qb =PI (Bhanot et.al, '87; Karliner et.al,'88; Azooiti et.al,’90; Luo, '01; Takaishi, '04)
¢ = © (complex phase) (Gocksch, '88)

P = ng (Ambjorn et. al., '02)

Our choice: ¢ = P g = |detM| exp{—Sgz}, f = exp{i6}



Results for QCD at large u
Z. Fodor, $.D. Katz, C. Schmidt, JHEP 0703:121,2007 [hep-lat/0701022]

N, = 4 staggered QCD on 64, 8. 67 lattices
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existence of a triple point around u,~ 300 MeV and T < 135 MeV
Note, L;=6 lattices: smallest T is 73 MeV (if m, fixes the scale)

Mass dependence checked:
small T" transition point does not depend on pion mass



Equation of state from lattice simulations

energy density (¢) and pressure (p) from partition function:

d(log Z)

p(T)=T N

T,V are varied by «, take derivative with respect of a

&—3p L? d{log Z)
= ——=a
e L3  da

the pressure (p « log[Z]) along the LCP by the integral method:

P a4 A(log Z) A(log Z)?
T“‘L_Lt/d(ﬁjm.a)( a3 ’8(m-a)>



Renormalization of the pressure

Wewant p(T=0)=0and e(T=0)=0 —
Simulations at both

T>0 (Nt € Ng) and T =0 (N >N;)
are necessary and then subtraction:

P _pr PO € _er €
T4 g4 e 74 P4 g4

numerical precision needed for the subtraction increases with N/
— CPU costs grow faster (©(1/a'?)) than for T = 0 simulations

Today
Ny = 4 is easy
Ny = 6 is difficult
Ny = 8 is a challenge



Previous lattice results

Wilson fermions: slower

Ongoing project: Bielefeld-Brookhaven-Columbia-Riken

EH=

[Ali-Khan et al, '01]
Staggered fermions: faster

[Bernard et al, '96]
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Equation of state and scaling
Y.Aoki, Z.Fodor, S.D.Katz, K.K.Szabo, JHEP, 0601, 089, 2006. F.Karsch, hep-ph/0701210
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— N; = 8 Is needed for final continuum-extrapolated result
recent 1;,=4,6 results also from the MILC collaboration: hep-lat/0611031



Link to perturbation theory: equation of state at large temperatures

lattice results forthe EoS perturbative series “converges’
extend upto a few times 7, only at asymptotically high T
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e the standard technique is the integral method:
p=T/V.log(Z), but Z is difficult = p integral of (dlog(Z)/df ,dlog(Z)/dm)
substract the T=0 term, the pressure is given by: p(T)=p(T )-p(T = 0)

e back of an envelope estimate:
T.~2150-200 MeV, mz=135 MeV and try to reach T=20.T, for N;=8 (a=0.0075 fm)
=N > 4/mg = 6/T, = 6.20/T = 6-20-N; = 1000 = completely out of reach



a. substract successively: p(T)=p(T)-p(T=0)= [p(T)-p(T/2)]+[p(T/2)-p(T/4)]+...
— for substractions at most twice as large lattices are needed
b. instead of the integral method calculate: 5(T)-5(T/2)=T/(2V)-log[Z(N;)/Z(2N;)]

Z(2N,) ?i ¢ i

i 2
0 N1

700 il 7o) = [ 1
{1-a)

define Z(a)= [ 2Uexp[-aS5-(1-a)Sa,] = Z%(N;)=Z(0) and Z(2N;)=Z(1)
one gets directly Jﬁ(T)—;5(Tf’2)=Tf’(2\:")J"OldIc:-g[Z((x)]fd05-d()ﬂ:T,"(2\:")f01 (S1p-Sqp)00-dax
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long awaited link between lattice thermodynamics and pert. theory is there
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The nature of the QCD transition
Y.Aoki, G.Endrodi, Z.Fodor, S.D.Katz, K.K.Szabo, Nature, 443 (2006) 675 [hep-lat/0611014]

Symanzik improved gauge, stout improved n=2+1 staggered fermions
simulations along the line of constant physics: mz=135 MeV, mz=500 MeV
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extrapolation from N; and N;+2 (standard action) ~ as good as N; with p4
Ni=8,10 gives == +1%, but a<0.15, 0.12 fm needed to set the scale (+1%)
thermodynamic quantities are obtained "more precisely" than the scale
(p4 independent config. is =10x more CPU = instead balance: a—0)
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Finite size scaling of the chiral susceptibility: x=(T /V)8710gZ/5m>~

first order transition — peak width « 1/V, peak height « V
cross over — peak width ~ constant, peak height ~ constant
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for aspect ratios 3—6 (an order of magnitude larger volumes)
volume independent scaling = cross-over

do we get the same result (cross-over) in the continuum limit?
one might have the unlucky case as we had in n ;=3 QCD:
for physical my discretization errors changed the order
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e finite size study of continuum extrapolated m“Ay (N,=4: off)
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the result is consistent with an approximately constant behavior
for a factor of 5 difference within the volume range

chance probability for 1/V is 1071° for O(4) is 7- 1013
continuum result with physical quark masses in staggered QCD:

the QCD transition at =0 is a cross-over



The transition temperature
Y. Aoki, Z. Fodor, 5.D. Katz, K.K. Szabo, Phys. Lett. B. 643 (2006) 46 [hep-lat/0609068]

& =)
set the physical scale and locate the physical point
Three quantities are needed (mz and mg for the quark masses)
Several possibilities for the third quantity
- string tension (not existing in full QCD)
- static quark potential at intermediate distances (rg -dV/dr=1.65)
- directly measurable quantities (e.q. fx)

Further quantities are predictions (e.g. rg, frz, #ig+)

e B0
cross-over — different definitions give different 7,
Possible choices:
- Chiral susceptibility
- Quark number susceptibility
- Polyakov-loop



T=0 Simulations

No well defined 7.

Example of water-steam transition
850

850 700 760

above the critical point ¢, and dp /dT give different 7i.s.

Cur choices in QCD
m2Ay
T4

— chiral transition

Quark number susceptibility

— de-confinement transition
Polyakov loop



e an even more often experienced example
melting of ice shows singular behavior: ice — water
melting of butter shows analytic behaviour {broad transition, cross-over)

natural fats are mixed triglycerids of fatty acids from Cy to Cyy
these are saturated or unsaturated of even carbon numbers

100 Sunflower gil —.— A
Sesame oli —— 3 =5
gof Peanutoil  -=--- 0
2 Qlive ail -
“tﬁ- Bl i _B]'d e
E i, 7 Coconut fat ==
£ aof f ; ,-f’! Butter fat - - ---
% £ i Margarine — —
20+ # ) <" Sour cream butter
',.-‘/__,Z/ - Sweet cream butter — . —
i e L =l 1 =g

0 i i i i i
-6 50 —<4Q -30 20 —-10 © 10 20 30 40 B0
Ti*C

Fig. 4. Liquid proportions of various fats and oils
since in QCD we have an analytic cross-over

we will see very similar temperature dependence for all quantities
e.g. chiral condensate, strange quark susceptibility or Polyakov loop
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Chiral susceptibility

T.=151(3)(3) MeV
AT=28(5)(1) MeV

Quark number susceptibility

T,=175(2)(4) MeV

AT=42(4)(1) MeV

Polyakov loop

T.=176(2)(4) MeV
AT,=38(5)(1) MeV

N,=6,8,10 are in the a2 scaling regime, N;=8,10 are practically the same



= 25(4) MeV difference between the chiral & the deconfinement transitions

normalization changes 7. (multiply a Gaussian by 72 = peak shifts)
continuum: e.g. Ay /T? gives =~10 MeV higher T.. than m?Ay/T* (blue curve)

the difference can be seen only at small lattice spacings
C. De Tar hotQCD N;=8 (asqtad): T. from ¥ tends to be at smaller values
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precise data at N;=8 and 10 are needed to see the difference



o To(Xyy) consistent with MILC "2004: 7. = 169(12)(4) MeV

e BBCR collaboration: recent result [M. Cheng et.al, Phys. Rev. D74 (2008) 054507]
Transition temperature from ¥y and Polyakov loop, from both quantities
1.=192(7)(4) MeV, = for xy contradicts our result (=40 MeV)

Main differences to our work
no renormalization, ¥ /77 is used: explains only =~ 10 MeV difference
only N; = 4 & 6 (cutoff: ¢ ~20.3 fm & 0.2 fm or a—1=2700 MeV & 1 GeV)
scale is set by ry instead of fr (influences only the overall accuracy)

Irenormalization : scale setting [10%] I overall error

I I I i I
0 MeV 10 MeV 20 MeV 30 MeV 40 MeV

What is the reason for this discrepancy?

Their last concluding remark: it is desirable to

“obtain a reliable independent scale setting for the transition temperature
from an observable not related to properties of the static potential”.



What if they used f¥ to set the scale?

We repeated some of their T =0 Alternatively:
simulations to determine fx We can use rp and only N;=4,6
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Continuum extrapolations from N; = 4,6 are inconsistent!

not surprising: eg. asqgtad at Ny=210 has ~10% scale difference between r; & fx
Llscher (Dublin) & DelDebbio et al: a=.06fm ~=20% difference between ry & mg+



What if they used f¥ to set the scale?

We repeated some of their T =0 Alternatively:
simulations to determine fx We can use ry and only N;=4,6,8,10
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Continuum extrapolations from N; = 6, 8, 10 are consistent!

Conclusion: continuum limit from N;=4,6 isn't safe (a¢~=0.3, 0.2 fm or 0.7, 1GeV)



Conclusions
lattice thermodynamics: important (already/soon full) results
nature of the transition: analytic transition (cross-over)
T discrepancies between groups: resolve it in the continuum
equation of state: still needs a continuum extrapolation
#>0 results are quite far from the continuum limit (N;=4)
“all” results are within the staggered formalism (non-locality)

—= closer to the continuum 4 non-staggered fermions



