Lattice QCD thermodynamics at μ =0 and μ \neq 0

Zoltán Fodor (University of Wuppertal & University of Budapest)

- 1. Standard picture of the phase diagram
- 2. Lattice formulation, fermion doubling, rooting
- 3. Lattice results at $L_t=4$ ($\mu>0$)
- 4. Lattice results at L_t =4,6 (equation of state)
- 5. Lattice results at L_t =4,6,8,10 (nature and T_c)
- 6. Conclusions

Standard picture of the phase diagram and its uncertainties

SC

phase

physical quark masses: important for the nature of the transition n_f =2+1 theory with m_q =0 or ∞ gives a first order transition for intermediate quark masses we have an analytic cross over (no χ PT)

F. Karsch et al., Nucl. Phys. Proc. 129 (2004) 614; Lattice'07 G. Endrodi, O. Philipsen continuum limit is important for the order of the transition: n_f =3 case (standard action, N_t =4): critical m_{ps} \approx 300 MeV with different discretization error (p4 action, N_t =4): critical m_{ps} \approx 70 MeV the physical pseudoscalar mass is just between these two values

what happens for physical quark masses, in the continuum, at what T_c ? N_t =4,6,8,10 lattices correspond to $a\approx$ 0.3 fm, 0.2 fm, 0.15 fm, 0.12 fm CPU: $\approx N_t^{12}$ (thermodynamics): N_t =10 needs 50-times more than N_t =6

Partition function

$$Z = \int dU d\Psi d\bar{\Psi} e^{-S_E}$$

 S_E is the Euclidean action

Parameters:

gauge coupling g quark masses m_i ($i = 1..N_f$)

(Chemical potentials μ_i)

Volume (V) and temperature (T)

Finite $T \leftrightarrow$ finite temporal lattice extension

$$T = \frac{1}{N_t a}$$

Continuum limit: $a \rightarrow 0$

Renormalization: keep the physical spectrum constant at finite *T*:

continuum limit $\iff N_t \to \infty$

CPU grows like N_t^{13} , thus $N_t=10$ instead of $N_t=6$ needs 50-100× more CPU

Overlap improving multi-parameter reweighting

Z. Fodor and S.D. Katz, Phys. Lett. B534 (2002) 87

$$Z(m,\mu,\beta) = \int \mathcal{D}U \exp[-S_g(\beta,U)] \det M(m,\mu,U) =$$

$$\int \mathcal{D}U \exp[-S_g(\beta_0,U)] \det M(m_0,\mu=0,U)$$

$$\left\{ \exp[-S_g(\beta,U) + S_g(\beta_0,U)] \frac{\det M(m,\mu,U)}{\det M(m_0,\mu=0,U)} \right\}$$

first line = measure, field configurations of the Monte-Carlo curly bracket = can be measured on each configuration, weight

simultaneously changing several parameters: better overlap e.g. transition configurations are mapped to transition ones

expectation value of an observable O:

$$\langle 0 \rangle_{\beta,\mu,m} = \frac{\sum w(\beta,\mu,m)O(\mu,m)}{\sum w(\beta,\mu,m)}$$

observables to get the transition points at $\mu \neq 0$ (susceptibilities)

Comparison with the Glasgow method

one parameter reweighting single parameter (μ) purely hadronic configurations

New method two parameters (μ and β) transition configurations

$\mu \neq 0$ multi-parameter reweighting with Taylor expansion

C.R. Allton et al., Phys. Rev. D66 074507,'02, D68 014507,'03

$$Z(m,\mu,\beta) = \int \mathcal{D}U \exp[-S_g(\beta,U)] \det M(m,\mu,U) =$$

$$\int \mathcal{D}U \exp[-S_g(\beta_0,U)] \det M(m_0,\mu=0,U)$$

$$\left\{ \exp[-S_g(\beta,U) + S_g(\beta_0,U)] \frac{\det M(m,\mu,U)}{\det M(m_0,\mu=0,U)} \right\}$$

instead of evaulating determinants expand them in μ or $exp(\mu)$:

$$\ln\left(\frac{\det M(\mu)}{\det M(0)}\right) = \sum_{n=1}^{\infty} \frac{\mu^n}{n!} \frac{\partial^n \ln \det M(0)}{\partial \mu^n} \equiv \sum_{n=1}^{\infty} R_n \mu^n$$

faster than the complete evaluation of the determinants only valid for somewhat smaller μ values than the full technique

QCD phase diagram from imaginary chemical potential

P.deForcrand, O.Philipsen, Nucl. Phys. B642 290,'02; B673 170, '03 M.D'Elia, M.P.Lombardo, Phys. Rev. D67 014505,'03

fermion determinant: real for imaginary chemical potential (μ_I) \Rightarrow no sign problem, no need for reweighting

directly obtain the (β_c, μ_I) transition line analytically continue it to get the physical (β_c, μ) line

transition line (β_c, μ_I) is given by the susceptibility-peak

$$\chi = V N_t \langle (\mathscr{O} - \langle \mathscr{O} \rangle)^2 \rangle, \qquad \partial \chi / \partial \beta = 0 \qquad \partial^2 \chi / \partial \beta^2 < 0$$

on finite V the analytic $\chi(\mu_I, \beta)$ can be measured using the implicitely given $\beta_c(\mu_I)$ one gets

$$\partial \beta_c / \partial \mu = -i \partial \beta_c / \partial \mu_I$$

Density of states (DOS) method

Constrained simulations:

Force some observable to have a given value this way configurations with all values of the observable present overlap problem not so serious

For any observable:

$$\langle O \rangle = \int dx \langle Of(U) \rangle_x \rho(x) / \int dx \langle f(U) \rangle_x \rho(x)$$

 $\rho,$ the density of states is the constrained partition function for some observable ϕ

$$\rho(x) \equiv Z_{\phi}(x) = \int \mathcal{D}U g(U) \, \delta(\phi - x).$$

Possible choices for ϕ :

$$\phi = PI$$
 (Bhanot et.al, '87; Karliner et.al, '88; Azooiti et.al, '90; Luo, '01; Takaishi, '04)

$$\phi = \Theta$$
 (complex phase) (Gocksch, '88)

$$\Phi = n_g$$
 (Ambjorn et. al., '02)

Our choice:
$$\phi = P$$
 $g = |\det M| \exp\{-S_G\}, \qquad f = \exp\{i\theta\}$

Results for QCD at large μ

Z. Fodor, S.D. Katz, C. Schmidt, JHEP 0703:121,2007 [hep-lat/0701022]

$$N_f = 4$$
 staggered QCD on 6^4 , $8 \cdot 6^3$ lattices

existence of a triple point around $\mu_q pprox$ 300 MeV and T \lesssim 135 MeV

Note, L_t =6 lattices: smallest T is 73 MeV (if m_ρ fixes the scale)

Mass dependence checked: small T transition point does not depend on pion mass

Equation of state from lattice simulations

energy density (ϵ) and pressure (p) from partition function:

$$\epsilon(T) = \frac{T^2}{V} \frac{\partial(\log Z)}{\partial T}$$
 $p(T) = T \frac{\partial(\log Z)}{\partial V}.$

T, V are varied by a, take derivative with respect of a

$$\frac{\epsilon - 3p}{T^4} = -\frac{L_t^3}{L_s^3} a \frac{d(\log Z)}{da}$$

the pressure $(p \propto \log[Z])$ along the LCP by the integral method:

$$\frac{p}{T^4} = L_t^4 \int d(\beta, m \cdot a) \left(\frac{\partial (\log Z)}{\partial \beta}, \frac{\partial (\log Z)}{\partial (m \cdot a)} \right)$$

Renormalization of the pressure

We want p(T=0)=0 and $\epsilon(T=0)=0$

Simulations at both

$$T>0$$
 $(N_t\ll N_{\scriptscriptstyle \mathcal{S}})$ and $T=0$ $(N_t\gtrsim N_{\scriptscriptstyle \mathcal{S}})$

are necessary and then subtraction:

$$\frac{p}{T^4} = \frac{p_T}{T^4} - \frac{p_0}{T^4}; \qquad \frac{\epsilon}{T^4} = \frac{\epsilon_T}{T^4} - \frac{\epsilon_0}{T^4}$$

numerical precision needed for the subtraction increases with $N_t^4 \rightarrow \text{CPU}$ costs grow faster $(\mathcal{O}(1/a^{13}))$ than for T=0 simulations

Today

 $N_t = 4$ is easy

 $N_t = 6$ is difficult

 $N_t = 8$ is a challenge

Previous lattice results

Wilson fermions: slower

[Ali-Khan et al, '01]

5.0 4.0

Staggered fermions: faster

3.0
2.0
3 tavour
2-1 tavour
2 tavour
1.0
1.0
1.0
1.0
2.0
2.5
3.0
3.5
4.0

[Bernard et al, '96]

[Karsch, Laermann, Peikert, 2000]

Ongoing project: Bielefeld-Brookhaven-Columbia-Riken

Equation of state and scaling

Y.Aoki, Z.Fodor, S.D.Katz, K.K.Szabo, JHEP, 0601, 089, 2006.

F.Karsch, hep-ph/0701210

 $\rightarrow N_t = 8$ is needed for final continuum-extrapolated result recent L_t =4,6 results also from the MILC collaboration: hep-lat/0611031

Link to perturbation theory: equation of state at large temperatures

lattice results for the EoS extend upto a few times T_c

perturbative series "converges" only at asymptotically high T

- the standard technique is the integral method: $\bar{p}=T/V \cdot \log(Z)$, but Z is difficult $\Rightarrow \bar{p}$ integral of $(\partial \log(Z)/\partial \beta, \partial \log(Z)/\partial m)$ substract the T=0 term, the pressure is given by: $p(T)=\bar{p}(T)-\bar{p}(T=0)$
- back of an envelope estimate:

 $T_c \approx 150-200$ MeV, $m_\pi = 135$ MeV and try to reach $T = 20 \cdot T_c$ for $N_t = 8$ (a=0.0075 fm) $\Rightarrow N_s > 4/m_\pi \approx 6/T_c = 6 \cdot 20/T = 6 \cdot 20 \cdot N_t \approx 1000 \Rightarrow \text{completely out of reach}$

$$\frac{Z^{2}(N_{t})}{Z(2N_{t})} = \frac{\sum_{i=0}^{N_{t}-2} N_{i}-1}{\sum_{i=0}^{N_{t}-2} Z(\alpha)} = \frac{Z^{2}(N_{t})}{\sum_{i=0}^{N_{t}-2} Z(\alpha)}$$

define $\bar{Z}(\alpha) = \int \mathscr{D}U \exp[-\alpha S_{1b} - (1-\alpha)S_{2b}] \Longrightarrow \mathbf{Z}^2(N_t) = \bar{Z}(0)$ and $\mathbf{Z}(2N_t) = \bar{Z}(1)$ one gets directly $\bar{p}(\mathsf{T}) - \bar{p}(\mathsf{T}/2) = \mathsf{T}/(2\mathsf{V}) \int_0^1 \mathsf{dlog}[\bar{Z}(\alpha)]/\mathsf{d}\alpha \cdot \mathsf{d}\alpha = \mathsf{T}/(2\mathsf{V}) \int_0^1 \langle S_{1b} - S_{2b} \rangle \alpha \cdot \mathsf{d}\alpha$

$$\frac{Z^{2}(N_{t})}{Z(2N_{t})} = \frac{\sum_{\alpha=0}^{N_{t}-2} N_{\alpha}-1}{\sum_{\alpha=0}^{N_{t}-2} N_{\alpha}}$$

$$\overline{Z}(\alpha) = \frac{\alpha}{2} \sum_{\alpha=0}^{(1-\alpha)} \alpha$$

define $\bar{Z}(\alpha) = \int \mathscr{D}U \exp[-\alpha S_{1b} - (1-\alpha)S_{2b}] \Longrightarrow Z^2(N_t) = \bar{Z}(0)$ and $Z(2N_t) = \bar{Z}(1)$ one gets directly $\bar{p}(T) - \bar{p}(T/2) = T/(2V) \int_0^1 d\log[\bar{Z}(\alpha)]/d\alpha \cdot d\alpha = T/(2V) \int_0^1 \langle S_{1b} - S_{2b} \rangle \alpha \cdot d\alpha$

$$\frac{Z^{2}(N_{t})}{Z(2N_{t})} = \frac{\sum_{1}^{N_{t}-1} N_{t}-1}{\sum_{1}^{2} (1-\alpha)} \overline{Z}(\alpha) = \frac{\overline{Z}(\alpha)}{\alpha}$$

define $\bar{Z}(\alpha) = \int \mathscr{D}U \exp[-\alpha S_{1b} - (1-\alpha)S_{2b}] \Longrightarrow \mathbf{Z}^2(N_t) = \bar{Z}(0)$ and $\mathbf{Z}(2N_t) = \bar{Z}(1)$ one gets directly $\bar{p}(\mathsf{T}) - \bar{p}(\mathsf{T}/2) = \mathsf{T}/(2\mathsf{V}) \int_0^1 \mathsf{dlog}[\bar{Z}(\alpha)]/\mathsf{d}\alpha \cdot \mathsf{d}\alpha = \mathsf{T}/(2\mathsf{V}) \int_0^1 \langle S_{1b} - S_{2b} \rangle \alpha \cdot \mathsf{d}\alpha$

$$\frac{Z^{2}(N_{t})}{Z(2N_{t})} = \frac{\sum_{i=0}^{\alpha} \overline{Z}(\alpha)}{\sum_{i=0}^{\alpha} \overline{Z}(\alpha)} = \frac{\overline{Z}(\alpha)}{\alpha}$$

define $\bar{Z}(\alpha) = \int \mathscr{D}U \exp[-\alpha S_{1b} - (1-\alpha)S_{2b}] \Longrightarrow Z^2(N_t) = \bar{Z}(0)$ and $Z(2N_t) = \bar{Z}(1)$ one gets directly $\bar{p}(T) - \bar{p}(T/2) = T/(2V) \int_0^1 d\log[\bar{Z}(\alpha)]/d\alpha \cdot d\alpha = T/(2V) \int_0^1 \langle S_{1b} - S_{2b} \rangle \alpha \cdot d\alpha$

long awaited link between lattice thermodynamics and pert. theory is there

$$\frac{Z^{2}(N_{t})}{Z(2N_{t})} = \frac{\sum_{i=0}^{\alpha} \overline{Z}(\alpha)}{\sum_{i=0}^{\alpha} \overline{Z}(\alpha)} = \frac{\overline{Z}(\alpha)}{\alpha}$$

define $\bar{Z}(\alpha) = \int \mathscr{D}U \exp[-\alpha S_{1b} - (1-\alpha)S_{2b}] \Longrightarrow \mathbf{Z}^2(N_t) = \bar{Z}(0)$ and $\mathbf{Z}(2N_t) = \bar{Z}(1)$ one gets directly $\bar{p}(\mathsf{T}) - \bar{p}(\mathsf{T}/2) = \mathsf{T}/(2\mathsf{V}) \int_0^1 \mathrm{dlog}[\bar{Z}(\alpha)]/\mathrm{d}\alpha \cdot \mathrm{d}\alpha = \mathsf{T}/(2\mathsf{V}) \int_0^1 \langle S_{1b} - S_{2b} \rangle \alpha \cdot \mathrm{d}\alpha$

long awaited link between lattice thermodynamics and pert. theory is there

The nature of the QCD transition

Y.Aoki, G.Endrodi, Z.Fodor, S.D.Katz, K.K.Szabo, Nature, 443 (2006) 675 [hep-lat/0611014]

Symanzik improved gauge, stout improved n_f =2+1 staggered fermions simulations along the line of constant physics: m_{π} =135 MeV, m_K =500 MeV

extrapolation from N_t and N_t+2 (standard action) \approx as good as N_t with p4 $N_t=8,10$ gives $\approx\pm1\%$, but a<0.15, 0.12 fm needed to set the scale ($\pm1\%$) thermodynamic quantities are obtained "more precisely" than the scale (p4 independent config. is >10× more CPU \Rightarrow instead balance: $a\rightarrow0$)

Finite size scaling of the chiral susceptibility: $\chi = (T/V)\partial^2 \log Z/\partial m^2$

first order transition \Longrightarrow peak width \propto 1/V, peak height \propto V cross over \Longrightarrow peak width \approx constant, peak height \approx constant

for aspect ratios 3–6 (an order of magnitude larger volumes) volume independent scaling \Longrightarrow cross-over

do we get the same result (cross-over) in the continuum limit? one might have the unlucky case as we had in n_f =3 QCD: for physical m_π discretization errors changed the order

• finite size study of continuum extrapolated m² $\Delta\chi$ (N_t =4: off)

the result is consistent with an approximately constant behavior for a factor of 5 difference within the volume range

chance probability for 1/V is 10^{-19} for O(4) is $7 \cdot 10^{-13}$

continuum result with physical quark masses in staggered QCD:

the QCD transition at μ =0 is a cross-over

The transition temperature

Y. Aoki, Z. Fodor, S.D. Katz, K.K. Szabo, Phys. Lett. B. 643 (2006) 46 [hep-lat/0609068]

T = 0:

set the physical scale and locate the physical point

Three quantities are needed (m_{π} and m_{K} for the quark masses)

Several possibilities for the third quantity

- string tension (not existing in full QCD)
- static quark potential at intermediate distances $(r_0^2 \cdot dV/dr = 1.65)$
- directly measurable quantities (e.g. f_K)

Further quantities are predictions (e.g. r_0 , f_{π} , m_{K^*})

T > 0:

cross-over \rightarrow different definitions give different T_c

- Possible choices:
 - Chiral susceptibility
 - Quark number susceptibility
 - Polyakov-loop

T>0 Simulations

No well defined T_c

Example of water-steam transition

above the critical point c_p and $d\rho/dT$ give different T_c s.

Our choices in QCD

$$\frac{m^2\Delta\chi}{T^4}$$
 \rightarrow chiral transition

Quark number susceptibility
Polyakov loop

de-confinement transition

an even more often experienced example

melting of ice shows singular behavior: ice ---- water

melting of butter shows analytic behaviour (broad transition, cross-over) natural fats are mixed triglycerids of fatty acids from C_4 to C_{24} these are saturated or unsaturated of even carbon numbers

Fig. 4. Liquid proportions of various fats and oils

since in QCD we have an analytic cross-over we will see very similar temperature dependence for all quantities e.g. chiral condensate, strange quark susceptibility or Polyakov loop

Chiral susceptibility

 N_t =6,8,10 are in the a^2 scaling regime, N_t =8,10 are practically the same

⇒ 25(4) MeV difference between the chiral & the deconfinement transitions

normalization changes T_c (multiply a Gaussian by $T^2 \Rightarrow$ peak shifts) continuum: e.g. $\Delta \chi / T^2$ gives ≈ 10 MeV higher T_c than $m^2 \Delta \chi / T^4$ (blue curve)

the difference can be seen only at small lattice spacings C. De Tar hotQCD N_t =8 (asqtad): T_c from χ tends to be at smaller values

precise data at N_t =8 and 10 are needed to see the difference

- $T_c(\chi_{\bar{\psi}\psi})$ consistent with MILC '2004: $T_c = 169(12)(4)$ MeV
- BBCR collaboration: recent result [M. Cheng et.al, Phys. Rev. D74 (2006) 054507] Transition temperature from $\chi_{\bar{\psi}\psi}$ and Polyakov loop, from both quantities T_c =192(7)(4) MeV, \Longrightarrow for $\chi_{\bar{\psi}\psi}$ contradicts our result (\approx 40 MeV)

Main differences to our work

no renormalization, χ/T^2 is used: explains only ≈ 10 MeV difference only $N_t=4$ & 6 (cutoff: $a\approx 0.3$ fm & 0.2 fm or $a^{-1}\approx 700$ MeV & 1 GeV) scale is set by r_0 instead of f_K (influences only the overall accuracy)

What is the reason for this discrepancy?

Their last concluding remark: it is desirable to

"obtain a reliable independent scale setting for the transition temperature from an observable not related to properties of the static potential".

What if they used f_K to set the scale?

Continuum extrapolations from $N_t = 4,6$ are inconsistent!

not surprising: eg. asqtad at $N_t \approx 10$ has $\approx 10\%$ scale difference between $r_1 \& f_K$ Lüscher (Dublin) & DelDebbio et al: a=.06fm $\approx 20\%$ difference between $r_0 \& m_{K^*}$

What if they used f_K to set the scale?

Continuum extrapolations from $N_t = 6, 8, 10$ are consistent!

Conclusion: continuum limit from N_t =4,6 isn't safe ($a\approx0.3$, 0.2 fm or 0.7, 1GeV)

Conclusions

lattice thermodynamics: important (already/soon full) results nature of the transition: analytic transition (cross-over) T_c discrepancies between groups: resolve it in the continuum equation of state: still needs a continuum extrapolation $\mu>0$ results are quite far from the continuum limit $(N_t=4)$ "all" results are within the staggered formalism (non-locality)

⇒ closer to the continuum + non-staggered fermions