Multiplicity Fluctuations Past - Present - Future

Michael Hauer¹

¹Helmholtz Research School, University of Frankfurt, Frankfurt, Germany

VI-SIM workshop in Bad Liebenzell

Helmholtz Research School Quark Matter Studies

Michael Hauer

Multiplicity Fluctuations

VI-SIM 12 Sept 07 1 / 33

Outline

1

Elementary Particle Collisions

- Koba-Nielsen-Olesen Scaling
- Wroblewski Relations

2 Heavy Ion Collisions

- Centrality Dependence
- Energy Dependence
- Phase Space Dependence

3 Conclusion

Elementary Particle Collisions Koba-Nielsen-Olesen Scaling Multiplicity Fluctuations in Elementary Particle Collisions

Inspired by Z. Koba, H. B. Nielsen and P. Olesen, Nucl. Phys. B 40 (1972) 317

PHYSICAL REVIEW D

VOLUME 7, NUMBER 7

1 APRIL 1973

< ロ > < 同 > < 回 > < 回 > < 回 > <

Evidence for the Systematic Behavior of Charged-Prong Multiplicity Distributions in High-Energy Proton-Proton Collisions*

P. Slattery

Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (Received 2 October 1972)

Evidence is presented to support the onset in the S0-301-GeV/c region of incident momentum of the asymptotic prediction of Koba, Nielsen, and Olesen regarding the scaling behavior of the charged-prome multiplicity distribution in proton-proton collisions. Lower-nergy data, at 19 and 28.5 GeV/c, are found not to demonstrate this behavior. The impact of this observation on the Mueller-Regge viewpoint is discussed.

One of the simplest and most direct measurements which can be made with a bubble chamber is the determination of charged-particle multiplicities. The present availability of bubble-chamber facilities at Serpukhov, USSR, and at Batavia, USA, has consequently made available for the first time accurate measurements of topological cross sections for very-high-energy proton-proton collisions (50-303 GeV/c). In this article we wish to examine the energy variation of these partial cross sections, and to compare the experimental data with two contrasting asymptotic predictions,

VI-SIM 12 Sept 07 3 / 33

Elementary Particle Collisions Koba-Nielsen-Olesen Scaling Multiplicity Fluctuations in Elementary Particle Collisions

Inspired by Z. Koba, H. B. Nielsen and P. Olesen, Nucl. Phys. B 40 (1972) 317

PHYSICAL REVIEW D

VOLUME 7, NUMBER 7

1 APRIL 1973

< ロ > < 同 > < 回 > < 回 > :

Evidence for the Systematic Behavior of Charged-Prong Multiplicity Distributions in High-Energy Proton-Proton Collisions*

P. Slattery

Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (Received 2 October 1972)

Evidence is presented to support the onset in the 50-303-GeV/c region of incident momentum of the asymptotic prediction of Koba, Nielsen, and Olesen regarding the scaling behavior of the charged-promg multiplicity distribution in proton-proton collisions. Lower-nergy data, at 19 and 28.3 GeV/c, are found not to demonstrate this behavior. The impact of this observation on the Multiler-Regge viewpoint is discussed.

One of the simplest and most direct measurements which can be made with a bubble chamber is the determination of charged-particle multiplicities. The present availability of bubble-chamber

A Bubble Chamber Event

Э

・ロト ・回ト ・ヨト ・ヨト

Multiplicity Distributions in elementary collisions

n plab (GeV/c)	19 ^a	50	69	102	205	303				
$\langle n \rangle \sigma_n / \sigma_{\rm inti}$										
2	1.227 ±0.020	1.08 ±0.11	0.940 ±0.068	0.88 ±0.10	0.82 ±0.17	0.50 ±0.14				
4	1,783 ±0.027	1.583 ±0.090	1.611 ±0.048	1,589 ±0,091	1.299 ±0.079	1.348 ±0.076				
6	0.789 ±0.021	1.345 ±0.084	1.476 ±0.046	1,489 ±0,096	1.622 ≠0.096	1.589 ±0.090				
8	0.186 ±0.010	0.848 ±0.069	1.013 ±0.038	1,140 ±0.087	1,354 ±0,085	1.504 ±0.086				
10	0.0314 ±0.0039	0.344 ±0.037	0.513 ±0.024	0.692 ±0.066	1.031 ±0.074	1.315 ±0.084				
12	0.00150 ±0.00088	0.081 ±0.017	0.238 ±0.015	0.399 ±0.054	0.801 ±0.064	1.168 ±0.083				
14	0.000 50 ±0.000 50	0.036 ±0.011	0.0740 ±0.0079	0,137 ±0.030	0.397 ±0.039	0.605 ±0.058				
16		0.0032 ±0.0032	0.0198 ±0.0039	0.037 ±0.016	0.204 ±0.026	0.388 ±0.045				
18			0.0023 ±0.0013	0.019 ±0.011	0,071 ±0.016	0.241 ±0.035				
20					0.042 ±0.012	0.142 ±0.026				
22					0.0129 ±0.0066	0.0189 ±0.0092				
24						0,028 ±0,011				
26						0.0142 ±0.0085				
			(#)							
	4.018 ±0.022	5.32 ±0.11	5.888 ±0.066	6,38 ±0,12	7.65 ±0.16	8.86 ±0.15				

TABLE I. Experimental values of $\langle n \rangle$ and of $\langle n \rangle \langle \sigma_n / \sigma_{inst} \rangle$ for the reaction $pp \rightarrow n$ charged particles at incident momenta of 19, 50, 69, 102, 205, and 303 GeV/c.

^a Not plotted in Fig. 1.

P. Slattery, Phys. Rev. D 7, 2073 (1973)

Elementary Particle Collisions

Koba-Nielsen-Olesen Scaling

Multiplicity Distributions in elementary collisions

FIG. 1. Plot of $\langle n \rangle \langle a_n / a_{nel} \rangle$ vs $\langle n / \langle n \rangle \rangle$ for the reaction $pp \rightarrow n$ charged particles at incident momenta of 50, 69, 102, 206, and 303 GeV/c. The individual data points are tabulated in Table I. The curve is an empirical fit to these data; the functional form employed is presented in the text [Eq. (2)].

$$\sigma_n / \sigma_{\text{inel}} \xrightarrow[s \to \infty]{} \frac{1}{\langle n \rangle} \psi \left(\frac{n}{\langle n \rangle} \right) \quad . \tag{1}$$

Here, σ_n is the partial cross section for the reaction $pp \rightarrow n$ charged particles, σ_{inel} is the total inelastic $pp \rightarrow n$ cross section (throughout this paper σ_2 does not include the elastic channel), $\langle n \rangle$ is the average number of charged particles produced at a particular value of squared center-of-mass energy s, and ψ is an energy-independent function.

In Fig. 1 we examine this prediction in the 50– 303-GeV/c range of incident momenta by plotting $\langle n \rangle \langle \sigma_n / \sigma_{inel} \rangle$ versus $n / \langle n \rangle$ for these data. The fact that a smooth curve may be drawn through all of the data points with a satisfactory χ^2 is a dramatic indication that the semi-inclusive scaling concept is experimentally valid in this range of incident momentum. The particular parametrization of the function $\psi(n / \langle n \rangle)$ which yields the curve shown in the figure is given by the formula

$$\psi(z=n/\langle n\rangle)=(3.79z+33.7z^3)$$

$$-6.64z^5 + 0.332z^7)e^{-3.04z}$$
. (2)

P. Slattery, Phys. Rev. D 7, 2073 (1973) Eq.(1) from Z. Koba, H. B. Nielsen and P. Olesen, Nucl. Phys. B 40 (1972) 317.

Multiplicity Fluctuations

The Concept of Similarity of Distributions

Fig. 1. Definition of the concept of similarity of continuous functions (KNO scaling). Normalized functions $\langle a \rangle$ are similar if upon a linear contraction of each of them along the horizontal direction in proportion to some of its horizontal dimensions—for example, $\langle n \rangle$ (b)—and a linear extension along the vertical direction in the same proportion (c) they coincide at each point.

A. I. Golokhvastov, Phys. Atom. Nucl. 64 (2001) 84

	Mic	hael	н	а	U	е	r
--	-----	------	---	---	---	---	---

< E

A B > A B >

Scaling of Dispersions

A. Wroblewski, Acta Phys. Polon. B **4**, 857 (1973). Figure actually found in: J. Whitmore, Phys. Rept. **10**, 273 (1974).

KNO scaling

$$P(n) = rac{\sigma_n}{\sigma_{inel.}}
ightarrow rac{1}{\langle n
angle} \psi\left(rac{n}{\langle n
angle}
ight)$$

implies scaling of moments

$$\langle n^q
angle
ightarrow c_q \langle n
angle^q, \quad q=2,3,4,\cdots$$

which implies scaling of Dispersions $D_q \equiv (\langle n^q \rangle - \langle n \rangle^q)^{1/q} = \langle n \rangle \times const$

Scaled Variance $\omega \equiv \frac{(D_2)}{\sqrt{n}}$

$$\equiv \frac{(D_2)^2}{\langle n \rangle} = \frac{\langle n^2 \rangle - \langle n \rangle}{\langle n \rangle}$$

VI-SIM

8/33

Scaling of Dispersions

M. Gazdzicki, R. Szwed, G. Wrochna and A. K. Wroblewski, Mod. Phys. Lett. A 6, 981 (1991).

KNO-G scaling

$$P(n) = \int_{\tilde{n}}^{\tilde{n}+1} P(\tilde{n}) , \text{ where}$$

 $P(\tilde{n}) = \frac{1}{\langle \tilde{n} \rangle} \psi(\frac{\tilde{n}}{\langle \tilde{n} \rangle}) \text{ and } \langle \tilde{n} \rangle \approx \langle n \rangle - 1$

A. I. Golokhvastov, Sov. J. Nucl. Phys. **27**, 430 (1978) [Yad. Fiz. **27**, 809 (1978)]

Wroblewski relation

follows from KNO-G scaling

$$D_2 = 0.576 \left(\langle n \rangle - 1 \right)$$

R. Szwed and G. Wrochna, Z. Phys. C 29, 255 (1985)

<ロ> <同> <同> < 回> < 回> < 三</p>

Multiplicity Fluctuations in Heavy Ion Collisions

- Enhanced fluctuations are one of the main proposed signals for a possible phase transition of QGP matter to hadronic matter or even a possible critical point.
- Unlike for pp multiplicity distributions, data is only available for limited geometric acceptance.
- Unlike in pp collision, the number of interacting nucleons fluctuates in A+A collisions.
- Possibly there are a few 'unexpected' things to learn?

A NA49 event

Fixed Target experiments

In this context some important features are:

- mostly forward acceptance
- calorimeter to measure projectile spectators
- however one cannot measure target spectators

< < >> < <</>

< E

Heavy Ion Collisions Centrality Dependence of NA49 fluctuation data at 158AGeV

C. Alt et al. [NA49 Collaboration], Phys. Rev. C 75, 064904 (2007)

Centrality and Acceptance

- fixed number of projectile participants
- target participants cannot be measured
- acceptance $1.1 < y_{c.m.} < 2.6$

Apparently unexpected:

- Strong increase towards peripheral collisions seen in Pb+Pb data
- Not reproduced by models!

- ₹ ₹ >

Fluctuation of N_{part} in Transport Models

V. P. Konchakovski, S. Haussler, M. I. Gorenstein, E. L. Bratkovskaya, M. Bleicher and H. Stoecker, Phys. Rev. C 73, 034902 (2006)

- average number of target and projectile participants should be equal, $\langle N_{part}^{targ} \rangle \approx \langle N_{part}^{proj} \rangle$
- BUT: only number of projectile participants is fixed experimentaly, and number of target participant fluctuates considerable (in transport simulations)
- This 'trivial' contribution can be minimized only for the sample of most central events.
- Why is similar behaviour not seen in transport simulations with NA49 accpetance?

< ロ > < 同 > < 三 > < 三 >

Heavy Ion Collisions

Centrality Dependence

Transport Models are too 'transparent'

Fluctuations in the target hemnisphere do not move across to the projectile hemnisphere.

There seems to be a significant amount of 'mixing' of target and projectile matter in data.

M. Gazdzicki and M. I. Gorenstein, Phys. Lett. B 640, 155 (2006)

A PHENIX event

Collider experiments

In this context some important features are:

- mostly acceptance around mid-rapidity
- they have calorimeters to measure spectator nucleons of both colliding ions
- however, since one cannot measure beam fragments, the measurement of N_{part} is rather unprecise

Fluctuation of N_{part} at RHIC

Centrality definition

Beam-Beam-Counters (BBC) measure charged particle multiplicity in the pseudo-rapidity range 3.0 $< |\eta| < 3.9$

Participant fluctuations

- cannot be neglected!
- but are also not necessarily the same in data and HSD simulations!

V. P. Konchakovski, M. I. Gorenstein and E. L. Bratkovskaya, arXiv:0704.1831 [nucl-th]

Heavy Ion Collisions

Centrality Dependence

PHENIX Multiplicity Fluctuation Data

V. P. Konchakovski, M. I. Gorenstein and E. L. Bratkovskaya, arXiv:0704.1831 [nucl-th]

Independent source model

$$\omega = \omega^{NN} + n \omega_P$$

- ω^{NN} mult. fluc. of N+N collisions
- *n* average multiplicity from one sources
- ω_P fluctuation of number of sources

'acceptance scaling' with q

$$\omega^{acc} = 1 - q + q \omega^{NN} + q n \omega_P$$

Centrality dependence

is different from that at SPS!

Possibly only due to different methods for centrality determination ??

A Short Summary on Centrality Dependence

- N_{part} fluctuations are a dominant source of multiplicity fluctuations!
- Even at fixed number of projectile participants the number of target participants can still vary considerably.
- For the study of multiplicity fluctuations only the sample of most central collisions (about 1%) should be used.
- For purely technical reasons centrality selection is done in different ways in fixed target and collider experiments.

Heavy Ion Collisions

Energy Dependence

Resonance Gas Multiplicity Fluctuations

Model parameters follow the chemical freeze-out line for central Pb+Pb (Au+Au) collisions of J. Cleymans, H. Oeschler, K. Redlich, and S. Wheaton. Phys. Rev. C 73, 034905 (2006)

F. Becattini, J. Manninen, and M. Gaździcki, Phys.
 Rev. C 73, 044905 (2006)

- GCE : no conservation laws enforced
- CE : only charge (B,S,Q) conservation
- MCE : energy and charge fixed

V. V. Begun, M. Gazdzicki, M. I. Gorenstein, M.H., V. P. Konchakovski, and B. Lungwitz, Phys. Rev. C **76** (2007) 024902

Fluctuations are different in different ensembles

V. V. Begun, M. Gazdzicki, M. I. Gorenstein and O. S. Zozulya, Phys. Rev. C **70**, 034901 (2004) F. Becattini, A. Keranen, L. Ferroni and T. Gabbriellini, Phys. Rev. C **72**, 064904 (2005)

Multiplicity Fluctuations

Heavy Ion Collisions

Energy Dependence

Comparison of Resonance Gas to NA49 Data

B. Lungwitz, AIP Conf. Proc. 892, 400 (2007)

Agreement with Data is surprising!

Especially since we made some strong assumptions/approximations

do we see the effect of conservation laws on fluctuations?

Experimental Acceptance

- changes from 4% at 20AGeV to about 16% at 158AGeV
- has been taken into account via an 'uncorrelated particle' approximation

Other Choices for Parameters

For reviews see also: A. Andronic, P. Braun-Munzinger and J. Stachel, Nucl. Phys. A **772** (2006) 167. J. Letessier and J. Rafelski, arXiv:nucl-th/0504028.

- lead to VERY similar results
- with the notable exception of γ_q models, however due to energy conservation still ω < 1

V.V.Begun, M.Gazdzicki, M.I.Gorenstein, M.H., V.P.Konchakovski, and B.Lungwitz, Phys. Rev. C 76 (2007) 024902

Michael Hauer

Multiplicity Fluctuations

Energy Dependence in Transport Models

B. Lungwitz and M. Bleicher, arXiv:0707.1788, Phys. Rev. C, in print

V. P. Konchakovski, M. I. Gorenstein and E. L. Bratkovskaya, Phys. Lett. B 651, 114 (2007)

- In both transport models the scaled variance is similar in A+A and p+p collisions
- In particular $\omega \propto \langle N \rangle$ (Wroblewski relation)
- ω increases monotonically with $\sqrt{s_{\rm NN}}$
- In the SPS energy range both relativistic microscopic transport models and MCE HRG are below ω < 1.
- However for RHIC energies they differ by a factor of 10.
- Fluctuations in transport models do not 'thermalize'?!

Heavy Ion Collisions

Energy Dependence

Energy Dependence of NA49 Data

Both HSD and MCE HRG are in good agreement with NA49 multiplicity fluctuation data for (1%) most central Pb+Pb collisions.

Larger experimental acceptance should allow to distinguish equilibrium and non-equilibrium models.

V. P. Konchakovski, M. I. Gorenstein and E. L. Bratkovskaya, Phys. Lett. B 651, 114 (2007)

VI-SIM 12 Sept 07 22 / 33

< E

A Short Summary on Energy Dependence

- Transport models show similar behavior of ω in A+A and p+p collisions.
- In comparison to the above the thermal model shows a rather flat dependence of the scaled variance on collision energy.
- Both transport models and MCE formulation of HRG are in good agreement with NA49 data.
- Present NA49 data does not allow for a conclusive distinction between models.

Heavy Ion Collisions Phase Space Dependence Momentum Cuts in Micro-Canonical Ensemble

Boltzmann pion gas at T = 160 MeV and zero charge density.

- Each bin contains same fraction of total yield
- Bars indicate size of the bin

Energy and momentum conservation lead to suppressed multiplicity fluctuations at high |y| and p_T .

Heavy Ion Collisions Phase Space Dependence

Momentum Cuts in UrQMD

B. Lungwitz and M. Bleicher, arXiv:0707.1788 [nucl-th], Phys. Rev. C, in print

3 🔺 🖌 3

< < >> < <</>

Momentum Cuts in NA49 Data

Rapidity and transverse momentum dependence also seen in data!

MCE effects are of similar magnitude as proposed enhancement due to a phase transition / critical point!

B. Lungwitz, talk given at Workshop on Critical Point and Onset Deconfinement and private communication

Multiplicity Distribution of negatively charged particles for most central (1%) Pb+Pb collision at 158 AGeV, both Data and UrQMD simulation, acceptance $1 < y_{\pi} < y_{beam}$.

B.Lungwitz and M.Bleicher, private communication

UrQMD overpredicts yields here by 33% but ω agrees within 1%

Both UrQMD and data well fitted by Gaussians !

-

Comparison of HRG to NA49 Distribution Data

B. Lungwitz *et al.* [NA49 Collaboration], PoS C **FRNC2006**, 024 (2006) V. V. Begun, M. Gazdzicki, M. I. Gorenstein, M.H, V. P. Konchakovski and B. Lungwitz, Phys. Rev. C **76**, 024902 (2007)

VI-SIM 12 Sept 07 28 / 33

- E

Conclusion

- A lot of good data is now available and has been studied
- More effort is need in order to understand trivial and not so trivial effects in data
- Data in larger acceptance, for different ion sizes, and at different energies would be very helpful
- A systematic study of momentum space dependence should be carried out
- A more detailed description of phase transitions and their effect on fluctuations is needed

Fluctuation data carries quite a lot of information about dynamics!

Conclusion

For supplying plots and references

Э

< D > < A > < B >

Many More Open Questions Fluctuations and Interaction

Van der Waals Gas

model repulsive interactions between hadrons

- suppression of densities can be removed by rescaling the system volume
- suppression of fluctuations is qualitatively different
- could be a first step towards a simple model with a phase transition

M.I. Gorenstein, M. Gaździcki, W. Greiner,

Phys. Rev. C 72, 024909 (2005)

Maybe only of academical interest,

but would that hold true in transport theory?

< ロ > < 同 > < 三 > < 三 >

D.H. Rischke, M.I. Gorenstein, H. Stöcker, W. Greiner, Z.Phys.C**51** 485-490, 1991 M. I. Gorenstein, M.H. and D. O. Nikolajenko, Phys. Rev. C **76**, 024901 (2007)

Fluctuations and the QGP

Does the signal survive hadronization?

S. Haussler, S. Scherer and M. Bleicher, arXiv:hep-ph/0702188.

The qMD model

- treats quarks and anti-quarks as classical point-like objects
- interaction via long-range color potential

M. Hofmann, M. Bleicher, S. Scherer, L. Neise, H. Stoecker and W. Greiner, Phys. Lett. B 478, 161 (2000)

Baryon-strangeness correlations

Different degrees of freedom in QGP and HRG

- $C_{BS} = rac{\langle B \cdot S \rangle \langle B \rangle \langle S \rangle}{\langle S^2 \rangle \langle S \rangle^2}$
- QGP : *C_{BS}* ≈ 1
- HRG : $C_{BS} \approx 0.66$

V. Koch, A. Majumder and J. Randrup, Phys. Rev. Lett. 95, 182301 (2005)

Many More Open Questions The KNO scaling function

M. Gazdzicki, R. Szwed, G. Wrochna and A. K. Wroblewski, Mod. Phys. Lett. A 6, 981 (1991).

Koba-Nielsen-Olesen Scaling Function

$$\Psi(z) = \frac{N}{\sqrt{2\pi\sigma}} \frac{1}{z+c} \exp\left[-\frac{\left[\ln(z+c)-\mu\right]^2}{2\sigma^2}\right]$$

R. Szwed and G. Wrochna, Z. Phys. C 47 (1990) 449

And as soon as it was found

Already scaling violation!

▶ < 直 ▶ < 直 ▶ 三 の へ (や <u>VI-SIM</u> 12 Sept 07 33 / 33