Multiplicity Fluctuations Past - Present - Future

Michael Hauer¹

¹ Helmholtz Research School, University of Frankfurt, Frankfurt, Germany

VI-SIM workshop in Bad Liebenzell

H-QM | Helmholtz Research School

Michael Hauer [Multiplicity Fluctuations](#page-33-0) VI-SIM 12 Sept 07 1 / 33

 QQ

Outline

1 [Elementary Particle Collisions](#page-2-0)

- **[Koba-Nielsen-Olesen Scaling](#page-2-0)**
- **[Wroblewski Relations](#page-8-0)**

2 [Heavy Ion Collisions](#page-10-0)

- [Centrality Dependence](#page-11-0)
- **[Energy Dependence](#page-19-0)**
- **[Phase Space Dependence](#page-24-0)**

3 [Conclusion](#page-29-0)

 $2Q$

Elementary Particle Collisions Koba-Nielsen-Olesen Scaling Multiplicity Fluctuations in Elementary Particle Collisions

Inspired by Z. Koba, H. B. Nielsen and P. Olesen, Nucl. Phys. B **40** (1972) 317

PHYSICAL REVIEW D

VOLUME 7, NUMBER 7

1 APRIL 1973

 $\left\{ \begin{array}{ccc} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{array} \right.$

Evidence for the Systematic Behavior of Charged-Prong Multiplicity Distributions in High-Energy Proton-Proton Collisions*

P. Slattery

Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (Received 2 October 1972)

Evidence is presented to support the onset in the 50-303-GeV/c region of incident momentum of the asymptotic prediction of Koba, Nielsen, and Olesen regarding the scaling behavior of the charged-prong multiplicity distribution in proton-proton collisions. Lower-energy data, at 19 and 28.5 GeV/c, are found not to demonstrate this behavior. The impact of this observation on the Mueller-Regge viewpoint is discussed.

One of the simplest and most direct measurements which can be made with a bubble chamber is the determination of charged-particle multiplicities. The present availability of bubble-chamber facilities at Serpukhov, USSR, and at Batavia, USA, has consequently made available for the first time accurate measurements of topological cross sections for very-high-energy proton-proton collisions (50-303 GeV/c). In this article we wish to examine the energy variation of these partial cross sections, and to compare the experimental data with two contrasting asymptotic predictions.

Michael Hauer [Multiplicity Fluctuations](#page-0-0) VI-SIM 12 Sept 07 3 / 33

Elementary Particle Collisions Koba-Nielsen-Olesen Scaling Multiplicity Fluctuations in Elementary Particle Collisions

Inspired by Z. Koba, H. B. Nielsen and P. Olesen, Nucl. Phys. B **40** (1972) 317

PHYSICAL REVIEW D

VOLUME 7, NUMBER 7

1 APRIL 1973

イロト イ母 トイヨ トイヨ トー

Evidence for the Systematic Behavior of Charged-Prong Multiplicity Distributions in High-Energy Proton-Proton Collisions*

P. Slattery

Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (Received 2 October 1972)

Evidence is presented to support the onset in the 50-303-GeV/c region of incident momentum of the asymptotic prediction of Koba, Nielsen, and Olesen regarding the scaling behavior of the charged-prong multiplicity distribution in proton-proton collisions. Lower-energy data, at 19 and 28.5 GeV/c, are found not to demonstrate this behavior. The impact of this observation on the Mueller-Regge viewpoint is discussed.

One of the simplest and most direct measurements which can be made with a bubble chamber is the determination of charged-particle multiplicities. The present availability of bubble-chamber

A Bubble Chamber Event

E

 $2Q$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

Multiplicity Distributions in elementary collisions

TABLE I. Experimental values of $\langle n \rangle$ and of $\langle n \rangle$ ($\sigma_n / \sigma_{\text{ind}}$) for the reaction $pp \to n$ charged particles at incident momenta of 19, 50, 69, 102, 205, and 303 GeV/c

^a Not plotted in Fig. 1.

P. Slattery, Phys. Rev. D **7**, 2073 (1973)

 Ω

 \leftarrow

K ロ ⊁ K 伊 ≯ K ミ ≯

Elementary Particle Collisions Koba-Nielsen-Olesen Scaling

Multiplicity Distributions in elementary collisions

FIG. 1. Plot of $\langle n \rangle$ ($\sigma_n / \sigma_{\text{inel}}$) vs $\langle n / \langle n \rangle$ for the reaction $pp \rightarrow n$ charged particles at incident momenta of 50, 69. 102, 205, and 303 GeV/ c . The individual data points are tabulated in Table I. The curve is an empirical fit to these data; the functional form employed is presented in the text $[Eq. (2)].$

$$
\sigma_n / \sigma_{\text{inel}} \xrightarrow[s \to \infty]{} \frac{1}{\langle n \rangle} \psi \left(\frac{n}{\langle n \rangle} \right) \ . \tag{1}
$$

Here, σ is the partial cross section for the reaction $bb \rightarrow n$ charged particles, σ_{inel} is the total inelastic bb cross section (throughout this paper σ . does not include the elastic channel). $\langle n \rangle$ is the average number of charged particles produced at a particular value of squared center-of-mass energy s, and ψ is an energy-independent function.

In Fig. 1 we examine this prediction in the $50-$ 303-GeV/ c range of incident momenta by plotting $\langle n \rangle$ ($\sigma_{\rm n}$, $\sigma_{\rm inel}$) versus $n/\langle n \rangle$ for these data. The fact that a smooth curve may be drawn through all of the data points with a satisfactory χ^2 is a dramatic indication that the semi-inclusive scaling concept is experimentally valid in this range of incident momentum. The particular parametrization of the function $\psi(n/\langle n \rangle)$ which yields the curve shown in the figure is given by the formula

$$
\psi(z = n/\langle n \rangle) = (3.79z + 33.7z^3
$$

$$
= 6.64z^5 + 0.332z^7)e^{-3.04z}
$$
 (2)

P. Slattery, Phys. Rev. D **7**, 2073 (1973) Eq.(1) from Z. Koba, H. B. Nielsen and P. Olesen, Nucl. Phys. B **40** (1972) 31[7.](#page-5-0)

Elementary Particle Collisions Koba-Nielsen-Olesen Scaling The Concept of Similarity of Distributions

Fig. 1. Definition of the concept of similarity of continuous functions (KNO scaling). Normalized functions (a) are similar if upon a linear contraction of each of them along the horizontal direction in proportion to some of its horizontal dimensions—for example, $\langle n \rangle$ (b)—and a linear extension along the vertical direction in the same proportion (c) they coincide at each point.

A. I. Golokhvastov, Phys. Atom. Nucl. **64** (2001) 84

Ξ

K ロ ト K 伺 ト K ヨ ト

 299

Scaling of Dispersions

A. Wroblewski, Acta Phys. Polon. B **4**, 857 (1973). Figure actually found in: J. Whitmore,Phys. Rept. **10**, 273 (1974).

KNO scaling

$$
P(n) = \frac{\sigma_n}{\sigma_{inel.}} \rightarrow \frac{1}{\langle n \rangle} \psi \left(\frac{n}{\langle n \rangle} \right)
$$

implies scaling of moments

$$
\langle n^q \rangle \to c_q \langle n \rangle^q, \quad q=2,3,4,\cdots
$$

which implies scaling of Dispersions $D_q \equiv \left(\langle n^q \rangle - \langle n \rangle^q \right)^{1/q} = \langle n \rangle \times const$

Scaled Variance

$$
\omega \equiv \frac{(D_2)^2}{\langle n \rangle} = \frac{\langle n^2 \rangle - \langle n \rangle}{\langle n \rangle}
$$

◆ロ → → 伊 → → 毛

$$
\mathbb{P}^{\mathbb{P}} \times \mathbb{R} \rightarrow \mathbb{P}^{\mathbb{P}} \times \mathbb{P}^{\mathbb{P}} \times \mathbb{P}^{\mathbb{P}}
$$

 $2Q$

2

Scaling of Dispersions

M. Gazdzicki, R. Szwed, G. Wrochna and A. K. Wroblewski, Mod. Phys. Lett. A **6**, 981 (1991).

KNO-G scaling

$$
P(n) = \int_{\tilde{n}}^{\tilde{n}+1} P(\tilde{n}) , \text{ where}
$$

$$
P(\tilde{n}) = \frac{1}{\langle \tilde{n} \rangle} \psi(\frac{\tilde{n}}{\langle \tilde{n} \rangle}) \text{ and } \langle \tilde{n} \rangle \approx \langle n \rangle - 1
$$

A. I. Golokhvastov, Sov. J. Nucl. Phys. **27**, 430 (1978) [Yad. Fiz. **27**, 809 (1978)]

Wroblewski relation

follows from KNO-G scaling

$$
D_2 = 0.576 \left(\langle n \rangle - 1 \right)
$$

R. Szwed and G. Wrochna, Z. Phys. C **29**, 255 (1985)

Heavy Ion Collisions Multiplicity Fluctuations in Heavy Ion Collisions

- **•** Enhanced fluctuations are one of the main proposed signals for a possible phase transition of QGP matter to hadronic matter or even a possible critical point.
- Unlike for pp multiplicity distributions, data is only available for limited geometric acceptance.
- Unlike in pp collision, the number of interacting nucleons fluctuates in A+A collisions.
- Possibly there are a few 'unexpected' things to learn?

 Ω

A NA49 event

Fixed Target experiments

In this context some important features are:

- **o** mostly forward acceptance
- **o** calorimeter to measure projectile spectators
- **•** however one cannot measure target spectators

 $\leftarrow \equiv +$

4 0 8 \leftarrow \leftarrow \leftarrow QQ

Heavy Ion Collisions Centrality Dependence Centrality Dependence of NA49 fluctuation data at 158AGeV

C. Alt *et al.* [NA49 Collaboration], Phys. Rev. C **75**, 064904 (2007)

Centrality and Acceptance

- **•** fixed number of projectile participants
- target participants cannot be measured
- acceptance $1.1 < y_{c.m.} < 2.6$

Apparently unexpected:

- Strong increase towards peripheral collisions seen in Pb+Pb data
- Not reproduced by models!

K ロ ト K 伺 ト K ヨ ト

 $2Q$

 \leftarrow \equiv

Heavy Ion Collisions Centrality Dependence Fluctuation of N_{part} in Transport Models

V. P. Konchakovski, S. Haussler, M. I. Gorenstein, E. L. Bratkovskaya, M. Bleicher and H. Stoecker, Phys. Rev. C **73**, 034902 (2006)

- average number of target and projectile participants should be $\langle N_{\textit{part}}^{\textit{targ}} \rangle \approx \langle N_{\textit{part}}^{\textit{proj}} \rangle$
- BUT: only number of projectile participants is fixed experimentaly, and number of target participant fluctuates considerable (in transport simulations)
- **O** This 'trivial' contribution can be minimized only for the sample of most central events.
- Why is similar behaviour not seen in transport simulations with NA49 accpetance?

4 ロ) (何) (ヨ) (ヨ

Heavy Ion Collisions Centrality Dependence

Transport Models are too 'transparent'

Fluctuations in the target hemnisphere do not move across to the projectile hemnisphere.

There seems to be a significant amount of 'mixing' of target and projectile matter in data.

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigcap \mathbb{R} \right\} & \left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \square \right\} \end{array} \right. \end{array} \right.$

M. Gazdzicki and M. I. Gorenstein, Phys. Lett. B **640**, 155 (2006)

 $2Q$

A PHENIX event

Collider experiments

In this context some important features are:

- mostly acceptance around mid-rapidity
- \bullet they have calorimeters to measure spectator nucleons of both colliding ions
- however, since one cannot measure beam fragments, the measurement of *Npart* is rather unprecise

 \leftarrow \leftarrow \leftarrow

 $\leftarrow \equiv +$

Heavy Ion Collisions Centrality Dependence

Fluctuation of N_{part} at RHIC

Centrality definition

Beam-Beam-Counters (BBC) measure charged particle multiplicity in the pseudo-rapidity range $3.0 < |\eta| < 3.9$

Participant fluctuations

- cannot be neglected!
- • but are also not necessarily the same in data and HSD simulations!

V. P. Konchakovski, M. I. Gorenstein and E. L. Bratkovskaya, arXiv:0704.1831 [\[nu](#page-15-0)cl[-th\]](#page-17-0)

Heavy Ion Collisions Centrality Dependence

PHENIX Multiplicity Fluctuation Data

V. P. Konchakovski, M. I. Gorenstein and E. L. Bratkovskaya, arXiv:0704.1831 [nucl-th]

Independent source model

$$
\omega = \omega^{NN} + n \omega_P
$$

- ω^NN mult. fluc. of N+N collisions
- \bullet *n* average multiplicity from one sources
- ω*^P* fluctuation of number of sources

'acceptance scaling' with *q*

$$
\omega^{acc} = 1 - q + q \omega^{NN} + q n \omega_P
$$

Centrality dependence

is different from that at SPS!

Possibly only due to different methods for centralit[y d](#page-16-0)[ete](#page-18-0)[r](#page-16-0)[mi](#page-17-0)[n](#page-18-0)[at](#page-10-0)[io](#page-11-0)[n](#page-18-0)[?](#page-9-0)[?](#page-10-0)

Heavy Ion Collisions Centrality Dependence A Short Summary on Centrality

- \bullet N_{part} fluctuations are a dominant source of multiplicity fluctuations!
- Even at fixed number of projectile participants the number of target participants can still vary considerably.
- For the study of multiplicity fluctuations only the sample of most central collisions (about 1%) should be used.
- For purely technical reasons centrality selection is done in different ways in fixed target and collider experiments.

 Ω

4 ロ) (何) (ヨ) (ヨ

Heavy Ion Collisions Energy Dependence

Resonance Gas Multiplicity Fluctuations

Model parameters follow the chemical freeze-out line for central Pb+Pb (Au+Au) collisions of

J. Cleymans, H. Oeschler, K. Redlich, and S. Wheaton, Phys. Rev. C **73**, 034905 (2006) F. Becattini, J. Manninen, and M. Gazdzicki, Phys. ´ Rev. C **73**, 044905 (2006)

- GCE : no conservation laws enforced
- CE : only charge (B,S,Q) conservation
- MCE : energy and charge fixed

V. V. Begun, M. Gazdzicki, M. I. Gorenstein, M.H., V. P. Konchakovski, and B. Lungwitz, Phys. Rev. C **76** (2007) 024902

Heavy Ion Collisions Energy Dependence

Comparison of Resonance Gas to NA49 Data

B. Lungwitz, AIP Conf. Proc. **892**, 400 (2007)

Agreement with Data is surprising!

Especially since we made some strong assumptions/approximations

do we see the effect of conservation laws on fluctuations?

Experimental Acceptance

- changes from 4% at 20AGeV to about 16% at 158AGeV
- **o** has been taken into account via an 'uncorrelated particle' approximation

Other Choices for Parameters

For reviews see also: A. Andronic, P. Braun-Munzinger and J. Stachel, Nucl. Phys. A **772** (2006) 167. J. Letessier and J. Rafelski, arXiv:nucl-th/0504028.

- **•** lead to VERY similar results
- \bullet with the notable exception of γ_q models, however due to energy conservation still $\omega < 1$

V.V.Begun, M.Gazdzicki, M.I.Gorenstein, M.H., V.P.Konchakovski, and B.Lung[witz](#page-19-0), [Phy](#page-21-0)[s.](#page-19-0) [Re](#page-20-0)[v.](#page-21-0) [C](#page-18-0) **[76](#page-19-0)** [\(](#page-23-0)[20](#page-24-0)[0](#page-9-0)[7\)](#page-10-0) [0](#page-28-0)[24](#page-29-0)[902](#page-0-0)

Michael Hauer [Multiplicity Fluctuations](#page-0-0) VI-SIM 12 Sept 07 20 / 33

 $na\alpha$

Heavy Ion Collisions Energy Dependence Energy Dependence in Transport Models

B. Lungwitz and M. Bleicher, arXiv:0707.1788, Phys. Rev. C, in print

V. P. Konchakovski, M. I. Gorenstein and E. L. Bratkovskaya, Phys. Lett. B **651**, 114 (2007)

- In both transport models the scaled variance is similar in A+A and p+p collisions
- **In particular** $\omega \propto \langle N \rangle$ (Wroblewski relation)
- ω increases monotonically with $\sqrt{s_{\sf NN}}$ \bullet
- In the SPS energy range both relativistic microscopic transport models and MCE HRG are below $ω < 1$.
- However for RHIC energies they differ by a factor of 10.
- ● Fluctuations in transport models do not 'the[rm](#page-20-0)[aliz](#page-22-0)[e](#page-20-0)['?!](#page-21-0)

Heavy Ion Collisions Energy Dependence Energy Dependence of NA49 Data

Both HSD and MCE HRG are in good agreement with NA49 multiplicity fluctuation data for (1%) most central Pb+Pb collisions.

Larger experimental acceptance should allow to distinguish equilibrium and non-equilibrium models.

4 ロ ト 4 何 ト 4 ヨ ト

V. P. Konchakovski, M. I. Gorenstein and E. L. Bratkovskaya, Phys. Lett. B **651**, 114 (2007)

 \rightarrow \equiv

 $2Q$

Heavy Ion Collisions Energy Dependence A Short Summary on Energy Dependence

- Transport models show similar behavior of ω in A+A and p+p collisions.
- In comparison to the above the thermal model shows a rather flat dependence of the scaled variance on collision energy.
- Both transport models and MCE formulation of HRG are in good agreement with NA49 data.
- **Present NA49 data does not allow for a conclusive** distinction between models.

 Ω

イロト イ何 ト イヨ ト イヨ ト

Heavy Ion Collisions Phase Space Dependence Momentum Cuts in Micro-Canonical Ensemble

Boltzmann pion gas at $T = 160 MeV$ and zero charge density.

- \bullet Each bin contains same fraction of total yield
- \bullet Bars indicate size of the bin

Energy and momentum conservation lead to suppressed multiplicity fluctuations at high $|y|$ and p_T .

 $4.17 \times$

 QQQ

Heavy Ion Collisions Phase Space Dependence Momentum Cuts in UrQMD

B. Lungwitz and M. Bleicher, arXiv:0707.1788 [nucl-th], Phys. Rev. C, in print

 QQ

(B) B \leftarrow

4 ロト 4 何 ト

Momentum Cuts in NA49 Data

Rapidity and transverse momentum dependence also seen in data!

MCE effects are of similar magnitude as proposed enhancement due to a phase transition / critical point!

B. Lungwitz, talk given at Workshop on Critical Point and Onset Deconfineme[nt a](#page-25-0)n[d pr](#page-27-0)[iv](#page-25-0)[ate](#page-26-0) [co](#page-27-0)[m](#page-23-0)[m](#page-24-0)[un](#page-28-0)[ic](#page-29-0)[ati](#page-9-0)[o](#page-10-0)[n](#page-28-0)

 $2Q$

Heavy Ion Collisions Phase Space Dependence Comparison of UrQMD to NA49 Distribution Data

Multiplicity Distribution of negatively charged particles for most central (1%) Pb+Pb collision at 158 AGeV, both Data and UrQMD simulation, acceptance 1 < *y*^π < *ybeam*.

B.Lungwitz and M.Bleicher, private communication

UrQMD overpredicts yields here by 33% but ω agrees within 1%

Both UrQMD and data well fitted by Gaussians !

Heavy Ion Collisions Phase Space Dependence Comparison of HRG to NA49 Distribution Data

B. Lungwitz *et al.* [NA49 Collaboration], PoS C **FRNC2006**, 024 (2006) V. V. Begun, M. Gazdzicki, M. I. Gorenstein, M.H, V. P. Konchakovski and B. Lungwitz, Phys. Rev. C **76**, 024902 (2007)

Michael Hauer [Multiplicity Fluctuations](#page-0-0) VI-SIM 12 Sept 07 28 / 33

 QQ

K ロ ト K 伺 ト K ヨ ト K ヨ

Conclusion

- A lot of good data is now available and has been studied
- More effort is need in order to understand trivial and not so trivial effects in data
- Data in larger acceptance, for different ion sizes, and at different energies would be very helpful
- A systematic study of momentum space dependence should be carried out
- A more detailed description of phase transitions and their effect on fluctuations is needed

Fluctuation data carries quite a lot of information about dynamics!

 Ω

Conclusion

For supplying plots and references

 \equiv

 $2Q$

K ロ ト K 伺 ト K ヨ ト

Many More Open Questions Fluctuations and Interaction

Van der Waals Gas

model repulsive interactions between hadrons

- **o** suppression of densities can be removed by rescaling the system volume
- suppression of fluctuations is qualitatively different
- could be a first step towards a simple model with a phase transition

M.I. Gorenstein, M. Gaździcki, W. Greiner,

Phys. Rev. C **72**, 024909 (2005)

Maybe only of academical interest,

but would that hold true in transport theory?

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigcap \mathbb{R} \right\} & \left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \square \right\} \end{array} \right. \end{array} \right.$

D.H. Rischke, M.I. Gorenstein, H. Stöcker, W. Greiner, Z.Phys.C51 485-490, 1991 M. I. Gorenstein, M.H. and D. O. Nikolajenko, Phys. Rev. C **76**, 024901 (2007)

 QQ

Many More Open Questions Fluctuations and the QGP

Does the signal survive hadronization?

1.4 1.2 $\sigma_{_{0.8}}^{^{3}}$ 0.6 0.4)1
time [fm/c]

S. Haussler, S. Scherer and M. Bleicher, arXiv:hep-ph/0702188.

The qMD model

- treats quarks and anti-quarks as classical \bullet point-like objects
- \bullet interaction via long-range color potential

M. Hofmann, M. Bleicher, S. Scherer, L. Neise, H. Stoecker and W. Greiner, Phys. Lett. B **478**, 161 (2000)

Baryon-strangeness correlations

Different degrees of freedom in QGP and HRG

•
$$
C_{BS} = \frac{\langle B \cdot S \rangle - \langle B \rangle \langle S \rangle}{\langle S^2 \rangle - \langle S \rangle^2}
$$

 \bullet QGP : $C_{BS} \approx 1$

• HRG:
$$
C_{BS} \approx 0.66
$$

V. Koch, A. Majumder and J. Randrup, Phys. Rev. Lett. **95**, 182301 (2005)

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigcap \mathbb{R} \right\} & \left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \square \right\} \end{array} \right. \end{array} \right.$

 QQ

Many More Open Questions The KNO scaling function

M. Gazdzicki, R. Szwed, G. Wrochna and A. K. Wroblewski, Mod. Phys. Lett. A **6**, 981 (1991).

Koba-Nielsen-Olesen Scaling Function

$$
\Psi(z) = \frac{N}{\sqrt{2\pi}\sigma} \frac{1}{z+c} \exp \left[-\frac{[\ln(z+c)-\mu]^2}{2\sigma^2} \right]
$$

R. Szwed and G. Wrochna, Z. Phys. C **47** (1990) 449

And as soon as it was found

K ロ ト K 伺 ト K ヨ ト

Already scaling violation!

 \leftarrow \equiv **Michael Hauer [Multiplicity Fluctuations](#page-0-0) VI-SIM 12 Sept 07 33 / 33**

 299

i