

VISIM Meeting, Monbachtal 2007

Low Mass Lepton Pairs – past, present and future

Joachim Stroth, Univ. Frankfurt/GSI

- introduction
- · pair spectra
- · excess yield
 - thermal radiation
 - transport
- p_T spectra
- next generation experiments

Electromagnetic structure of dense/hot matter

introduction

Lepton pairs, can probe the electromagnetic structure of nuclear matter under extreme conditions.

They couple through time-like photons and test the **spectral properties** of hadronic/quark-gluon matter on the femto-scale.

Exploring the phase diagram of matter

Chemical freeze-out puts landmarks in the experimentally unknown regions.

- Vniversal conditions for freezeout?
- ✗ Limiting temperature T_{max}?

LQCD explores unknown regions from solid grounds at $\mu_{\rm B}\text{=}0.$

×
$$T_c = T_{max}$$
?

***** $T_c = 170$ MeV or $T_c = 190$ MeV?

QCD inspired models demonstrate the melting of the condesates.

P. Braun-Munzinger, K. Redlich, J. Stachel (e.g. nucl-th/0304013) J. Cleymans, K. Redlich (e.g. PRC 60 054908)

The Observable

Overview on experiments (low-mass pairs) introduction LHC → Inner Tracker RHIC PH^{*}ENIX → HPID SPS TPC **SIS300** GAP **SIS 100 HADES** AGS upgrade **SIS18** HADES DLS **Bevalac**

time (advance in technology)

Experimental challenges

Resolution

Helps to self-analyze the spectral shape

- ✓ Excellent (low-mass tracking)
- ✓ Good statistics

Acquire good statistics

Permits a multi-differential analysis

- ✓ Good pair acceptance (" 4π " spectrometer)
- ✓ High trigger rates
- ✓ Trigger

Minimize signal-to-background

Reduces the systematic and statistical error

- ✓ Physical background → rejection strategy
- $\checkmark \ \ \mathsf{Fake tracks} \to \mathsf{excellent detectors}$

Contributions from conventional sources

- ✓ Partially self-analyzing (see resolution)
- ✓ Need to measure neutral mesons or rely on models

Decay	BR	
η→μ⁺μ⁻	5.8±0.8 · 10 ⁻⁶	PDG
η→e⁺e⁻	<7.7 · 10 ⁻⁵	PDG
η→e⁺e⁻	5±1 · 10 ⁻⁹	χрт
π ⁰ →e ⁺ e ⁻	6.2±0.5 · 10 ⁻⁸	PDG
π ⁰ →e⁺e⁻	7±1 · 10 ⁻⁸	χрт

Pair spectra

e⁺e⁻ yields (HADES)

Completed runs (results)

- C+C 2 AGeV (final)
 - 1 10⁸ events analyzed
 - 23 10³ signal pairs
 - 2.3 10⁻⁴ signal pairs/event
- C+C 1 AGeV (final)
- Ar+KCl C+C 1.75 AGeV (prelim.)

S/B (C+C)			
@ M [GeV/c²]	0.2	0.6	
2 AGeV	0.5	2	
1 AGeV	0.9	5	

e⁺e⁻ yields (Ceres)

pair spectra

Completed HI runs (results)

- S+Au 200 AGeV (final)
- Pb+Au 158 AGeV (final)
- Pb+Au* 40 AGeV (final)
- Pb+Au* 158 AGeV (final)
 - 1.8 10⁷ events analyzed
 - 8.2 10³ signal pairs
 - 4.6 10⁻⁴ signal pairs/event

* with TPC

S/B		
@ <i>M</i> [GeV/c²]	0.2	0.6
40 AGeV	0.25	0.13
158 AGeV	0.08	0.06

$\mu^+\mu^-$ yields (NA60)

Completed HI runs (results)

- In+In 158 AGeV (final))
 - 1.3 10⁸ events (analyzed)
 - 3.6 10⁵ signal pairs
 - 2.7 10⁻³ signal pairs/event

S/B (In+In)		
@ M [GeV/c²]	0.2	0.6
periph.	5	0.9
semi-periph.	1	0.14
semi-centr.	0.33	0.06
centr.	0.35	0.07

J. Seixas, QMO6

e⁺e⁻ yields (PHENIX)

Completed runs (results)

- p+p 200 GeV
- Au+Au 200 AGeV

S/B (Au+Au)		
@ M [GeV/c²]	0.2	0.6
200 AGeV	0.03	0,006

Event collection: NA60 and HADES

pair spectra

	Data volume	Trigger purity	Trigger limitation
NA60 In+In (2003)	4.5 TB	2.7 10 ⁻³	Works as long as $\gamma \tau(\pi)$ is large compared to the flight path before absorber At low energies muons have still to traverse the absorber
HADES Ar+KCI (2005)	9 TB	2.3 10-4	Fake (ring) matches, can be improved if MDC is in the trigger. At high energies by multiplicities of electrons from π^0 (Dalitz and conversion)

Excess yield

The DLS puzzle

excess yield

Electron pair excitation function:

- No contradiction between DLS and HADES
- Strong evidence for extra contributions from decays of baryonic resonances.

Centrality dependence of the excess (SPS)

- Enhancement grows with centrality (CERES 158 AGeV)
- Pair multiplicity grows stronger than linear with centrality (PHENIX)
- Excess yield relative to cocktail ρ grows with centrality (NA60)
- Excess grows when going down in energy from 158 AGeV to 40 AGeV (not shown here).

excess yield and thermal radiation

Excess yield and thermal radiation

Subtracted spectra (NA60)

excess yield and thermal radiation

- x Data disproves a scenario assuming a purely shifting ρ
- × Smallest contribution from cocktail ρ to the excess for pt < 0.5 GeV/c
 - Excess suppressed on the low-mass side due to acceptance!

S. Damianovic, HQOG

Subtracted spectra (CERES)

Broadening of ρ driven by baryonic effects

excess yield and thermal radiation

X

CERES coll., nucl-ex/0611022

Mass spectrum (PHENIX)

- ***** Excess above ω pole mass?
- × Huge excess around $m_{ee} \sim 400 \text{ MeV/c}^2$

Broad range enhancement: 150 < m_{ee} < 750 MeV 3.4±0.2(stat.) ±1.3(syst.)±0.7(model)

> R.Rapp, Phys.Lett. B 473 (2000) R.Rapp, Phys.Rev.C 63 (2001) R.Rapp, nucl/th/0204003

PHENIX coll., arXiv:0706.3034

Excess yield and transport

Enhancement and transport

excess yield and transport

RQMD: M. D. Cozma, C. Fuchs, E. Santini, A. Faessler, Phys. Lett. B 640, 150 (2006) **UrQMD:** D. Schumacher, S. Vogel, M. Bleicher, nucl-th/06080401. **HSD (v2.5):** W. Cassing and E. L. Bratkovskaya, Phys. Rep. 308, 65 (1999).

Transport calculations based on vacuum spectral functions ...

- **x** qualitatively describe the data.
- undershoot between 200<M_{ee}<500 MeV/c².
- **x** overshoot for M_{ee} >700 MeV/c².

HADES – HSD vacuum

Inv. mass Good agreement Undershoot at ~ 0.4 GeV/c²?

$\underline{P_t}$ Distributions

 $M_{ee} < 0.15 \text{ GeV/c}^2 - \pi^0 \text{ dominated}$ $M_{ee} > 0.15 \text{ GeV/c}^2$:

Bremsstrahlung important at low p_t

Medium modifications in transport (HADES)

RQMD: M. D. Cozma, C. Fuchs, E. Santini, A. Faessler, Phys. Lett. B 640, 150 (2006)
UrQMD: D. Schumacher, S. Vogel, M. Bleicher, nucl-th/06080401.
HSD (v2.5): W. Cassing and E. L. Bratkovskaya, Phys. Rep. 308, 65 (1999).

Uncertainties in the η and ω production

excess yield and transport

J. Aichelin et al., nucl-th/0702004

η production in the statistical model

- Iso-spin effects in η production not fully under control (see arXiv:nucl-th/0702004v1)
- Validity of statistical model at low energies and for small systems not evident

Compilation by R. Holzmann and A. Andronic, priv. comm.

P_t distributions

Acceptance corrected p_t spectra (NA60)

 p_T distributions

- * Excess yield dominantly at low pt
- > pt slopes show weak centrality dependence (not shown below)
- * Systematic uncertainties (not shown below):
 - grow with centrality and towards lower p_t

J. Seixas, QMO6

p_{t:} spectra (CERES)

p_T distributions

 p_t weakly sensitive on type of spectral function in a $\pi\pi$ annihilation scenario.

S. Ioursevich, Doct. Thes. 05

 $200 MeV/c^2 < m_{co} < 700 MeV/c^2$

1.4

1.2

1.8

2

1.6

pt_∞ (GeV/c)

p_t>200 MeV/c

⊖_{ee}>35 mrad

2.1<y<2.65

p_t: closer look (NA60)

 p_{T} distributions

Improved expansion model (H: van Hees, R. Rapp ..):

- 1. initial hard processes \leftrightarrow Drell Yan
- 2. "core" \leftrightarrow emission from thermal source
- 3. "corona" \leftrightarrow emission from "cocktail" mesons
- 4. after thermal freeze-out \leftrightarrow emission from "freeze-out" mesons

p_t: efficiency/acceptance corrected (NA60)

- × non-trivial behavior of slope parameter beyond $M = 1 \text{ GeV/c}^2$.
- continuum pairs show flow

× Hot ρ?

H. Specht + NA60, INPC07

P_t Spectra 1 AGeV C+C

Good agreement in π^0 region Underestimation for M_{ee}> 0.15 GeV/c² Excess over Cocktail A ($\pi^0 + \eta + \omega$) \rightarrow enhancement at low P_t

next generation experiments

PHENIX with Hadron Blind Detector

HBD concept:

- windowless CF4 Cherenkov detector
- 50 cm radiator length
- Csl reflective photocathode
- Triple GEM with pad readout
- Reverse bias (to get rid of ionization electrons in the radiator gas)

From HADES to CBM @ FAIR

Dielectron reconstruction in CBM

Invariant mass spectra Au+Au 25 AGeV

- S No optimization of cuts
- G Free cocktail only (without medium contribution)
- Simulated statistics is 100k events

PhD Tetyana Galatyuk GSI/Frankfurt

The muon option in CBM

Simulations Au+Au 25 AGeV:

- Different analysis strategies for lowmass and high-mass pairs
- Low efficiency for small invariant masses and/or low p_t (enhancement region).

Challenging muon detector (high particle densities)

 Micro-pattern gas detectors with pad readout.

Muon Chamber System

Muon pairs (CBM)

Acceptance in pt and m_{inv} plane

electrons $()^{10^2}$ $()^{1$

0.4

0.6

0.8 1 m_{e*e} (GeV/c²)

10⁻²

0.2

muons

(My) conclusions

- × The quality of data will finally be determined by systematical errors.
- **×** High statistics needed to allow multi-differential analyses.
- Understanding the cocktail requires the measurement of neutral mesons (η , ω).
- Systematic measurements are needed to fully exploit the capabilities of low-mass lepton pair spectroscopy:
 - Compare low / high beam energies to study effects of the fireball expansion.
 - **×** Use elementary reactions to constrain spectral functions.
- **×** Trigger (at FAIR energies):
 - ✗ e⁺e⁻: most likely not possible
 - * $\mu^+\mu^-$: difficult without introducing huge bias
- Excitation function of the enhancement can possibly signal a critical slowing-down of the expansion.