

Heavy quarks and high p_T in nuclear collisions

Elena Bratkovskaya

13.09.2007, Meeting of the Virtual Institute for Strongly Interacting Matter (VI-SIM), "Heavy Ion Physics Perspectives", Monbachtal e.v., Bad Liebenzell

Signals of the phase transition:

- Strangeness enhancement
- Multi-strange particle enhancement
- Charm suppression
- Collective flow (v₁, v₂)
- Thermal dileptons
- Jet quenching and angular correlations
- High p_T suppression of hadrons
- Nonstatistical event by event fluctuations and correlations

•••

Experiment: measures final hadrons and leptons

How to learn about physics from data?

Compare with theory!

Microscopical transport models provide a unique dynamical description of nonequilibrium effects in heavy-ion collisions

Open and hidden charm

,Anomalous' J/Ψ suppression in A+A

Heavy flavor sector reflects the actual dynamics since heavy hadrons can only be formed in the very early phase of heavy-ion collisions !

Anomalous J/Ψ suppression in A+A (NA38/NA50/NA60)

J/Ψ ,normal' absorption by nucleons (Glauber model)

Experimental observation: extra suppression in A+A collisions; increasing with centrality

Scenarios for charmonium suppression in A+A

• QGP threshold melting

[Satz et al'03]

Quarkonium dissociation temperatures:

state	${\rm J}/\psi(1S)$	$\chi_c(1P)$	$\psi'(2S)$	$\Upsilon(1S)$	$\chi_b(1P)$	$\Upsilon(2S)$	$\chi_b(2P)$	$\Upsilon(3S)$
T_d/T_c	2.10	1.16	1.12	> 4.0	1.76	1.60	1.19	1.17

Dissociation energy density $\epsilon_d \sim 2(T_d/T_c)^4$

•Comover absorption

[Gavin & Vogt, Capella et al.'97]: charmonium absorption by low energy inelastic scattering with ,comoving' mesons (m= π , η , ρ ,...): J/ Ψ +m <-> D+Dbar Ψ '+m <-> D+Dbar χ_{C} +m <-> D+Dbar

Charmonium dynamics -> HSD

Check scenarios for charmonium suppression in A+A using microscopic transport models

Transport models

Microscopic transport models provide the dynamical description of nonequilibrium effects in heavy-ion collisions

HSD – Hadron-String-Dynamics transport approach

Charm and Charmonium production and absorption in HSD

Charmonium = hard probe

=> binary scaling!

• Production $\sigma(J/\Psi)$ and $\sigma(\Psi')$ in N+N and π +N collisions: parametrization of the available exp. data

Coupled channel problem: $\sigma_{J/\Psi}^{e\times p} = \sigma_{J/\Psi} + B(\chi_c - J/\Psi) \sigma_{\chi_c} + B(\Psi' - J/\Psi) \sigma_{\Psi}'$

• y-, p_T – distributions of **J**/ Ψ in pp at RHIC are controlled by the PHENIX data :

 $J/\Psi(\chi_c, \Psi') + B \longrightarrow D+Dbar +X$

Charmonia-baryon dissociation cross sections can be fixed from p+A data:

HSD-2003:

Pre-resonance c-cbar pairs (color-octet states): $\sigma_{cc \ B} = 6 \text{ mb} \ (\tau_{cc} = 0.3 \text{ fm/c})$ Formed charmonium (color-singlet states): $\sigma_{J/\Psi \ B} = 4 \text{ mb}, \ \sigma_{\chi \ B} = 5 \text{ mb}, \ \sigma_{\Psi' \ B} = 8 \text{ mb}$

HSD-2006/2007:

 $\sigma_{cc B} = \sigma_{J/\Psi B} = \sigma_{\chi B} = 4.18 \text{ mb}, \ \sigma_{\Psi' B} = 7.6 \text{ mb}$ adopting a new Glauber fit from NA50 1. Charmonia dissociation cross sections with π , ρ , K and K* mesons $J/\Psi(\chi_c, \Psi')$ + meson $(\pi, \rho, K, K^*) \leftrightarrow D$ +Dbar

5.5

5.5

s^{1/2} [GeV]

PRC 67 (2003) 054903

Charmonium recombination by D-Dbar annihilation

At SPS recreation of J/Ψ by D+Dbar annihilation is negligible

But at RHIC recreation of J/Ψ by D+Dbar annihilation is strong!

Modelling of the QGP melting scenario in HSD

Energy density ε (x=0,y=0,z;t) from HSD for Pb+Pb collisions at 160 A GeV

Energy density ε (x=0,y=0,z;t) from HSD for Au+Au collisions at 21300 A GeV

Threshold energy densities: J/ Ψ melting: $\epsilon(J/\Psi)=16$ GeV/fm³ χ_c melting: $\epsilon(\chi_c)=2$ GeV/fm³ Ψ ' melting: $\epsilon(\Psi')=2$ GeV/fm³

[Olena Linnyk et al., nucl-th/0612049, NPA 786 (2007) 183]

,Local' energy density ε versus Bjorken energy density ε_{Bj}

HSD reproduces PHENIX data for Bjorken energy density very well
HSD results are consistent with simple estimates for the energy density

J/Ψ and Ψ' suppression in In+In and Pb+Pb at SPS: Comover absorption

• Exp. data (NA50/NA60) for Pb+Pb and In+In at 160 A GeV are consistent with the comover absorption model for the same set of parameters!

[Olena Linnyk et al., nucl-th/0612049, NPA 786 (2007) 183]

J/Ψ and Ψ' suppression in In+In and Pb+Pb at SPS: QGP threshold scenario

Set 1: $\varepsilon(J/\Psi)=16$ GeV/fm³, $\varepsilon(\chi_c)=2$ GeV/fm³, $\varepsilon(\Psi')=2$ GeV/fm³

Set 1: QGP threshold melting scenario with dissociation energy densities $\epsilon(J/\Psi)=16 \text{ GeV/fm}^3, \epsilon(\chi_c)=2 \text{ GeV/fm}^3,$ $\epsilon(\Psi')=2 \text{ GeV/fm}^3$

shows too strong Ψ ' absorption which contradicts to the NA50 data!

[Olena Linnyk et al., nucl-th/0612049, NPA 786 (2007) 183]

J/Ψ and Ψ' suppression in Au+Au at RHIC: Comover absorption

arXiv:0705.4443, PRC'07, in press]

J/Ψ and Ψ' suppression in Au+Au at RHIC: QGP threshold scenario

Satz's model: complete dissociation of initial J/ Ψ and Ψ' due to the huge local energy densities !

Energy density cut ε_{cut} =1 GeV/fm³ reduces the meson comover absorption, however, D+Dbar annihilation can not generate enough charmonia, especially for peripheral collisions!

QGP threshold melting scenario is ruled out by PHENIX data!

J/Ψ excitation function

•**Comover** reactions in the hadronic phase give almost a constant suppression; pre-hadronic reactions lead to a larger recreation of charmonia with E_{beam}

• The J/ Ψ melting scenario with hadronic comover recreation shows a maximum suppression at $E_{beam} = 1 \text{ A TeV}$; exp. data ?

Ψ' excitation function

Ψ' suppression provides independent information on absorption versus recreation mechanisms !

HSD: v_2 of D+Dbar and J/ Ψ from Au+Au versus p_T and y at RHIC

HSD predictions for CBM - elliptic flow at 25 A GeV

•HSD: D-mesons and J/Ψ follow the charged particle flow => small v₂

AMPT with string melting shows much stronger v₂! (Che-Ming Ko)

Possible observation at CBM: strong initial flow of D-mesons and J/Ψ due to partonic interactions!

Summary I.

- **J/Ψ probes early stages of fireball and HSD is the tool to model it.**
- Comover absorption and threshold melting both reproduce J/Ψ survival in Pb+Pb as well as in In+In at SPS, while $\Psi'/J/\Psi$ data appear to be in conflict with the melting scenario.
- Comover absorption and threshold melting fail to describe the RHIC data at s^{1/2}=200 GeV for Au+Au at mid- and forward-rapidities simultaneously.
- STAR data on v₂ of high p_T charged hadrons and charm D mesons are NOT reproduced in the hadron-string picture => evidence for a huge plasma pressure ?!

High p_T suppression of hadrons

High p_T **suppression of hadrons: exp. observables**

Cronin effect: initial state semi-hard gluon radiation increases p_T spectra already in p+A or d+A

Dynamical modeling of the Cronin effect in HSD:

$$< k_T^2 >_{AA} = < k_T^2 >_{PP} (1 + a N_{Prev})$$

N_{Prev}= number of previous collisions (dynamically calculated for each hadron!)

parameter a = 0.25 - 0.4

W. Cassing, K. Gallmeister and C. Greiner, Nucl. Phys. A 735 (2004) 277 $R_{dA}(p_{T}) = \frac{1/N_{dA}^{event} \cdot d^{2}N_{dA}/dydp_{T}}{< N_{coll} > /\sigma_{pp}^{inelas} \cdot d\sigma_{pp}/dydp_{T}}$

63

High p_T suppression in non-central Au+Au (HSD)

• Hadron-string model with Cronin effect provides \sim enough high p_T suppression for non-central Au+Au

Cronin effect in central Au+Au at RHIC (HSD)

$$\mathbf{R}_{AA}(\mathbf{p}_{T}) = \frac{1/N_{AA}^{\text{event}} \cdot \mathbf{d}^{2}N_{AA}/dydp_{T}}{< N_{\text{coll}} > /\sigma_{\text{pp}}^{\text{inelas}} \cdot \mathbf{d}\sigma_{\text{pp}}/dydp_{T}}$$

 Hadron-string model doesn't provide enough high p_T suppression for central Au+Au

→ Extra suppression :

from early partonic phase ?!

Jet suppression: dN/dφ

Jet suppression: $dN/d\phi$

The jet angular correlations for pp are fine!

Au+Au: The near-side jet angular correlation is well described, but the suppression of the far-side jet is too low!

Cassing et al., NPA 748 (2005) 241

Summary II.

- Cronin effect (initial state semi-hard gluon radiation) increases p_T spectra already in p+A or d+A
- The attenuation of high p_T-hadrons (R_{AA}) is well reproduced in the hadron-string approach for non-central Au+Au collisions at top RHIC energies, however, underestimated in central Au+Au collisions.
- The jet angular correlations for pp are fine, however, the suppression of the ,far-side' jet is underestimated in central Au+Au collisions at s^{1/2} = 200 GeV
- System interacts more strongly in the early phase than hadronlike matter !

Outlook

• A deconfined phase is clearly reached at RHIC, but a theory having the relevant/proper degrees of freedom (quarks and gluons) in this regime is needed to study its transport properties.

HSD → Parton-Hadron-String-Dynamics (PHSD)

PHSD – transport description of the partonic and hadronic phase

Thanks

Olena Linnyk (FIAS) Wolfgang Cassing (Giessen Uni.) Volodymyr Konchakovski (Frankfurt Uni.) Andrej Kostyuk (FIAS) Laura Tolos (FIAS) + Horst Stöcker (GSI, FIAS, Frankfurt Uni.)

Outlook: PHSD - basic concepts

Initial A+A collisions – HSD: string formation and decay to pre-hadrons

Fragmentation of pre-hadrons into quarks: using the quark spectralfunctions from the Dynamical QuasiParticle Model (DQPM)approximation to QCDDQPM: Peshier, Cassing, PRL 94 (2005) 172301;
Cassing, NPA 791 (2007) 365: NPA 793 (2007)

Partonic phase: quarks and gluons (= ,dynamical quasiparticles') with off-shell spectral functions (width, mass) defined by DQPM

elastic and inelastic parton-parton interactions: using the effective cross sections from the DQPM

- ✓ q + qbar (flavor neutral) <=> gluon (colored)
- ✓ gluon + gluon <=> gluon (possible due to large spectral width)
- ✓ q + qbar (color neutral) <=> hadron resonances

Hadronization: based on DQPM - massive, off-shell quarks and gluons with broad spectral functions hadronize to off-shell mesons and baryons: gluons → q + qbar; q + qbar → meson; q + q + q → baryon

Hadronic phase: hadron-string interactions – off-shell HSD

Dilepton radiation from the sQGP – NA60

Conjecture: the sQGP shows up already at SPS energies !