Signals of QGP instabilities and plasma isotropization

Michael Strickland

Frankfurt Institute for Advanced Studiesand Institute for Theoretical Physics, Frankfurt am Main

Heavy Ion Physics Perspectives, Bad Liebenzell, Germany13 September 2007

Plasma anisotropies and signatures of instabilities

- $\bullet\,$ The fact that ideal hydro seems to describe v_2 imply early isotropization (and possibly thermalization). $_{\rm 2}$ so well seems to
- But this observable seems to be dependent on the late-time evolution of the plasma (eg, viscous hadronic phase), final-stateinteractions, etc.
- It would be nice to have other observables which could further constrain the physics at early times (ideally not dependent on fully3d viscous hydro simulations ⁺ hadronic cascade ⁺ . . .).
- The catch-22 of thermalization:

If complete thermalization is achieved (and maintained) then subsequent emissions are independent of the initial condition and how precisely thermalization **was achieved. So** . . .

Signatures of non-equilibrium QGP evolution (cntd)

- We therefore have to concentrate observables which are sensitiveto early times in the collision, $\tau{\lesssim}$ $\lesssim1$ fm/c. Four natural candidates are: event-by-event fluctuations, jet broadening, dilepton emission, and photon emission.
- High-energy jets can act as "test particles" probing the propertiesof the medium at early times.
- Photons and dileptons give us clean electromagnetic signal swhich can hopefully be used to map out the early stages of plasma evolution.
- Can we determine from these observables when/if the systembecomes locally isotropic in momentum space or, beyond that, thermal?
- Is there an alternative explanation for the seemingly small viscosity of the matter generated at RHIC which does not invokestrong-coupling AdS/CFT \leftrightarrow QCD analogies?

Momentum Space Anisotropy Time Dependence

Expansion dynamically generates large chromo fields

Non-abelian Hard-Expanding-Loops, A. Rebhan, MS, and M. Attems, forthcoming

Michael Strickland

Expansion dynamically generates correlated fields

Non-abelian Hard-Expanding-Loops, A. Rebhan, MS, and M. Attems, forthcoming

Resulting chromo-fields generate longitudinal pressure

Non-abelian Hard-Expanding-Loops, A. Rebhan, MS, and M. Attems, forthcoming

Michael Strickland

Event-by-Event Fluctuations -

Event-by-Event Fluctuations

The original proposal for possible signatures of plasma instabilities was large event-by-event azimuthal fluctuations.

Ouark-Gluon Plasma instabilities

A characteristic property of the OGP system is the possibility to observe collective effects due to colour degrees of freedom [109, 110]. Such effects can occur provided that the local colour neutrality (locally vanishing colour charge and colour current) is violated by random colour fluctuations. These fluctuations are strongly damped for a system close to thermodynamic equilibrium. However, at the early stage of high-energy nuclear collisions, the momentum distribution of partons is expected to be strongly anisotropic, far from equilibrium. In this case, as in the electromagnetic plasma [111], one expects the existence of unstable plasma modes with amplitudes exponentially growing with time. The dynamics of such a system is dominated by mean field interactions. The system behaves in a collective way, which should be reflected in event-by-event fluctuations. Note that the effects should be large (in contrast to nuclear flow) in central nucleusnucleus collisions. [...]

St. Mrowczynski and M. Gazdzicki, Alice Technical Proposal, CERN/LHCC/95-71 LHCC/P3, 194 (1995).

Particle correlations due to instabilities

"Generation of Magnetic Fields in Cosmological Shocks", Medvedev, et al, Journal of the Korean Astr. Soc. 37 (5), 533 (2004).

Michael Strickland

Sausage vs Pancake

Perhaps there's ^a comprimise?

Azimuthal Fluctuations?

- This flow fluctuation would appear also in central collisions. Event-by-event direction of the correlation in ϕ would be random.
- Bad news: there are currently no quantitative estimates of the sizeof azimuthal fluctuations due to non-abelian plasma instabilities. Detailed analytical and numerical studies are required.
- It's not clear that correlated "abelianized" field configurations would be obtained in ^a heavy-ion collision. 3d simulations of non-abeliantheories indicate a transition to a *turbulent regime* at late times.
- At RHIC, STAR and PHOBOS results seem to indicate that v2fluctuations are consistent with initial state ellipticity fluctuations. †
- However, both the STAR and PHOBOS results have ^a dependence on the assumed hydro equation of state indicating that this observable may be sensitive to more than just the initial condition.

Jet Energy Loss/Broadening -

Anisotropic heavy quark collisional energy loss

- What is the effect of anisotropic quark/gluon distribution functions on heavy quark energy loss?
- We can split the problem into hard ($p\sim$ $p_{\rm hard}$) and soft ($p\sim gp_{\rm hard}$) contributions.
- The soft contribution is given by the expression

$$
-\left(\frac{\mathrm{d}W}{\mathrm{d}t}\right)_{\mathrm{soft}} = g^2 C_F \mathrm{Im} \int \frac{d^3 \mathbf{q}}{(2\pi)^3} \left(\mathbf{q} \cdot \mathbf{v}\right) v^i \left[\Delta^{ij}(Q) - \Delta_0^{ij}(Q)\right] v^j ,
$$

• The hard contribution is given by evaluating these diagrams

Collisional Energy Loss Results

In an anisotropic plasma the collisional energy loss depends on thedirection of propagation of the jet.

[left] P. Romatschke and MS, hep-ph/0408275; P. Romatschke, hep-ph/0607327; [right] Experiment nucl-ex/0509030, nucl-ex/0503022. Michael Stricklandp. 16/36

Including radiative energy loss

Majumder, Müller, and Bass (hep-ph/0611135) assume ^a backgroundof large-amplitude transverse chromo-magnetic fields and then can calculate the energy loss of ^a heavy quark traversing this medium toNLO.^

$$
\left[\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla_r - \nabla_p D(\mathbf{p}, t) \nabla_p \right] \bar{f} = C[\bar{f}]
$$

with

$$
D_{ij} = \int_{-\infty}^t dt' \left\langle F_i(\bar{r}(t'), t') F_j(\bar{r}(t), t) \right\rangle
$$

 $\mathbf{F} \;\; = \;\; gQ^a$ l exert= for \blacksquare $^a(\mathbf{E}^a$ Lorentz force generated by the turbulent a + v \times B^a $^a)$ is the color color fields, and $C[f]$ denotes the collision term.

3D Colored-Particle-in-Cell Simulations (CPIC)

Can also simulate particle-field systems in real-time using 3D Colored-Particle-in-Cell (CPIC) codes. Includes large-angle deflection of particles by their self-generated fields.

Include back-reaction by solving collisional QCD transport equations without linearization

$$
p^{\mu}[\partial_{\mu}-g q^{a} F^{a}_{\mu\nu}\partial_{p}^{\nu}-gf_{abc}A^{b}_{\mu}q^{c}\partial_{q^{a}}]f(x,p,q) = C[f]
$$

Coupled to the Yang-Mills equation for thesoft gluon fields

$$
D_{\mu}F^{\mu\nu} = J^{\nu} = g \int \frac{d^3p}{(2\pi)^3} dq \, q \, v^{\nu} f(t, \mathbf{x}, \mathbf{p}, q)
$$

A. Dumitru, Y. Nara, and MS, hep-ph/0604149; A. Dumitru, Y. Nara, B. Schenke, and MS, forthcoming.

Using CPIC to study jet broadening via instabilities

Can use CPIC code to simulate parton transport through selfconsistently generated color-field backgrounds!

Jets are modelled as additional high-energy "test particles". Using thiscode we can perform real-time measurements of jet (statistical)properties.

"The Ridge" – Open questions

- Need data on η -broadening of the away-side jet.
- If this is ^a medium effect then the ridge should appear there ^aswell.
- Detailed analysis of near-side jet average path length isnecessary.
- Surface bias implies relatively short path length in which ^t ogenerate the effect.

Electromagnetic Observables -

E&M Probes to determine plasma isotropization time

- Can we experimentally determine when/if the plasma becomeslocally isotropic in momentum-space?
- Need observables which provide complementary ways of probingearly-time dynamics.
- Ideal candidates for this are E&M observables, eg photon anddilepton emission.
- Dependence of photon rate on anisotropy has been evaluated ^t oLO (Schenke and MS, hep-ph/0611332); however, photons are notoriously difficult for experimentalists to measure due to largebackgrounds.
- Dileptons offer ^a better opportunity since one can study productionas ^a function of invariant pair mass (photon virtuality) andtransverse momentum.

Dileptons from an Anisotropic Plasma

• The dilepton rate d^4R/d^4 anisotropy and the angle of the dilepton pair with 4p depends on plasma respect to the beam axis.

• To leading order it can be obtained using anisotropic momentumspace distributions of the form

$$
f^{q,\bar{q}}(\mathbf{p}, \mathbf{x}) = f_{\text{iso}}^{q,\bar{q}}(p_T^2 + (1+\xi)p_L^2)
$$

 $\bullet \;\; \xi=0$ gives isotropic plasma and $\xi=10$ corresponds to a squish by ^a factor of approximately three along the longitudinal momentum direction.

$$
\frac{\langle p_T^2 \rangle}{\langle p_L^2 \rangle} \sim 1+\xi
$$

M. Guerrero and MS, forthcoming.

Dileptons from an Anisotropic Plasma

For a free streaming plasma
\n
$$
\xi(\tau) = \left(\frac{\tau}{\tau_0}\right)^2 - 1
$$
\n
$$
\lim_{\tau \gg \tau_0} \mathcal{E}(\tau) \rightarrow \mathcal{E}_0 \left(\frac{\tau_0}{\tau}\right)
$$
\n
$$
\text{``}T\text{''}(\tau) = T_0
$$

For an isotropic plasma $\xi(\tau) = 0$ $\mathcal E$ $\mathcal{E}(% \mathcal{E}(\omega),\mathcal{E}(\omega))=\mathcal{E}(\mathcal{E}(\mathcal{E}(\mathcal{E}(\omega),\mathcal{E}(\omega))))$ $\tau)$ = \mathcal{E}_0 $\frac{1}{0}$ $\left(\frac{\tau_0}{\tau}\right)$ $\left(\frac{\tau_0}{\tau}\right)^4$ $\frac{4}{ }$ 3 $T($ $\tau)$ = T_0 $\left(\frac{\tau_0}{\tau}\right)$ $\left(\frac{\tau_0}{\tau}\right)^1$ $\frac{1}{\sqrt{2}}$ 3

Can construct models which interpolate between free streaming andisotropic hydrodynamic expansion, eg:

$$
\lambda(\tau, \tau_{\text{hydro}}, \gamma) = \frac{1}{2} \tanh \left(\gamma (a - a_{\text{hydro}}) \right) \quad a \equiv \tau / \tau_0
$$

$$
\xi(\tau) = a^{2(1-\lambda)} - 1
$$

$$
\mathcal{E}(\tau) = \mathcal{E}_{\text{FS}} f \left(a_{\text{hydro}}^2 - 1 \right) \left(\frac{a_{\text{hydro}}}{a} \right)^{\lambda/3}
$$

$$
T(\tau) = T_0 f \left(a_{\text{hydro}}^2 - 1 \right)^{\lambda/4} \left(\frac{a_{\text{hydro}}}{a} \right)^{\lambda/3}
$$

Michael Strickland

Space-time evolution incorporating anisotropies (LHC)

- \bullet $\tau_{\mathrm{hydro}}/\tau_0 \rightarrow 1$: instant isotropization/thermalization.
- \bullet $\tau_{\rm hydro}/\tau_0 \rightarrow \infty$ ∞ : never
thermalizes: isotropizes or thermalizes; free-streaming.

Results - Dileptons vsM

 $T_0 = 845$ MeV, $\tau_0 = 0.088$ fm/c, $T_c = 160$ MeV, $\tau_0 \leq \tau_{\rm hydro} \leq 1$ fm/c Cuts: $p_T>8$ GeV

Michael Strickland

p. 26/36

Results - Dileptons vs M with backgrounds

 $T_0=845$ MeV, $\tau_0=0.088$ fm/c, $T_c=160$ MeV Cuts: $p_T>8$ GeV

Michael Strickland

p. 27/36

Results - Dileptons vs P_T

Michael Strickland

Results - Dileptons vsPT **with backgrounds**

Anomalous Viscosity -

Possibility of Anomalous Viscosity

- These large amplitude color fields can be thought of as ^ahighly-populated ensemble of low-momentum or "soft" particles.
- In the presence of such large fields one must revisit basiccalculations such as the calculation of the viscosity. ∗
- In ^a weakly-coupled isotropic ⁺ high-temperature thermal systemthe viscosity is related to the collisional mean free path of thepartons†

$$
\eta \sim \lambda_f T^4 \sim \frac{T^3}{g^4 \log(1/g)}
$$

$$
\lambda_{\text{hard}} \sim \frac{1}{g^4 T}
$$

$$
\lambda_{\text{soft}} \sim \frac{1}{g^2 T}
$$

†Arnold, Moore, Yaffe, hep-ph/0010177. ∗ Asakawa, Müller, and Bass, hep-ph/0608270

Anomalous Viscosity (cntd)

- Asakawa, Müller, and Bass have recently (hep-ph/0608270) performed ^a computation of the viscosity due to large-amplitudeturbulent field configurations.
- Therein they compute the mean free path of ^a particle propagatingin such ^a background and find

$$
\lambda_{\rm f}^{\rm (A)}\sim \frac{\bar{p}^2}{g^2Q^2\langle\mathcal{E}^2+\mathcal{B}^2\rangle r_{\rm m}}
$$

$$
\frac{\eta_{\rm A}}{s} = \frac{1}{g^{3/2}} \left(\frac{(N_c^2 - 1)T\tau}{10b_0N_c} \right)^{1/2}
$$

 $\eta_{\rm A}/s$ is not bound from below by the AdS-CFT bound.

Asakawa, Müller, and Bass, hep-ph/0608270

Conclusions

- Anisotropic plasmas are qualitatively different than isotropic ones.
- Unstables modes result in spontaneous generation of largeamplitude soft background fields.
- These non-equilibrium fields can modify fundamental properties of ^a quark-gluon plasma such as viscosity, 3d jet diffusion, plasmathermalization time, etc.
- We now have simple models which allow us to calculate the effect of anisotropies on experimental observables, eg jet and E&Msignatures. More to come \dots
- There is continuous advancement in the numerical techniqueswhich can be used for simulating non-equilibrium gauge dynamics.
- At LHC energies, our dilepton results show a window from $p_T \sim 3$ 7 GoV where is it pessible to determine much peeded information ⁷ GeV where is it possible to determine much-needed informationabout the initial ¹ fm/c of the QGP's lifetime.

Backup Slides -

Cause for despair

Naive application of resummed finite-temperature perturbation theory to thermodynamics fails to converge at any reasonable temperature soshould we abandon it?

Cause for (limited) hope

