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Plasma anisotropies and signatures of instabilities
• The fact that ideal hydro seems to describe v2 so well seems to

imply early isotropization (and possibly thermalization).

• But this observable seems to be dependent on the late-time
evolution of the plasma (eg, viscous hadronic phase), final-state
interactions, etc.

• It would be nice to have other observables which could further
constrain the physics at early times (ideally not dependent on fully
3d viscous hydro simulations + hadronic cascade + . . . ).

• The catch-22 of thermalization:

If complete thermalization is achieved (and maintained) th en subsequent emis-
sions are independent of the initial condition and how preci sely thermalization
was achieved. So . . .
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Signatures of non-equilibrium QGP evolution (cntd)
• We therefore have to concentrate observables which are sensitive

to early times in the collision, τ <
∼ 1 fm/c. Four natural candidates

are: event-by-event fluctuations, jet broadening, dilepton emission,
and photon emission.

• High-energy jets can act as “test particles” probing the properties
of the medium at early times.

• Photons and dileptons give us clean electromagnetic signals
which can hopefully be used to map out the early stages of
plasma evolution.

• Can we determine from these observables when/if the system
becomes locally isotropic in momentum space or, beyond that,
thermal?

• Is there an alternative explanation for the seemingly small
viscosity of the matter generated at RHIC which does not invoke
strong-coupling AdS/CFT ↔ QCD analogies?
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Momentum Space Anisotropy Time Dependence
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Expansion dynamically generates large chromo fields
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Expansion dynamically generates correlated fields
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Resulting chromo-fields generate longitudinal pressure
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- Event-by-Event Fluctuations -
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Event-by-Event Fluctuations
The original proposal for possible signatures of plasma instabilities was large event-by-event

azimuthal fluctuations.

[...]

St. Mrowczynski and M. Gazdzicki, Alice Technical Proposal, CERN/LHCC/95-71 LHCC/P3, 194 (1995).
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Particle correlations due to instabilities

“Generation of Magnetic Fields in Cosmological Shocks”, Medvedev, et al, Journal of the Korean Astr. Soc. 37 (5), 533 (2004).
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Sausage vs Pancake
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Perhaps there’s a comprimise?
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Azimuthal Fluctuations?
• This flow fluctuation would appear also in central collisions.

Event-by-event direction of the correlation in φ would be random.
• Bad news: there are currently no quantitative estimates of the size

of azimuthal fluctuations due to non-abelian plasma instabilities.
Detailed analytical and numerical studies are required.

• It’s not clear that correlated “abelianized” field configurations would
be obtained in a heavy-ion collision. 3d simulations of non-abelian
theories indicate a transition to a turbulent regime at late times.

• At RHIC, STAR and PHOBOS results seem to indicate that v2
fluctuations are consistent with initial state ellipticity fluctuations.†

• However, both the STAR and PHOBOS results have a
dependence on the assumed hydro equation of state indicating
that this observable may be sensitive to more than just the initial
condition.

† STAR, nucl-ex/0612021; PHOBOS, [nucl-ex] 0707.4424v1
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- Jet Energy Loss/Broadening -
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Anisotropic heavy quark collisional energy loss

• What is the effect of anisotropic quark/gluon distribution functions
on heavy quark energy loss?

• We can split the problem into hard (p ∼ phard) and soft (p ∼ gphard)
contributions.

• The soft contribution is given by the expression

−

(

dW

dt

)

soft

= g2 CF Im

∫

d3q

(2π)3
(q · v) vi

[

∆ij(Q) − ∆ij
0 (Q)

]

vj ,

• The hard contribution is given by evaluating these diagrams

P. Romatschke and MS, hep-ph/0408275.Michael Strickland p. 15/36



Collisional Energy Loss Results

In an anisotropic plasma the collisional energy loss depends on the
direction of propagation of the jet.
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Including radiative energy loss

Majumder, Müller, and Bass (hep-ph/0611135) assume a background
of large-amplitude transverse chromo-magnetic fields and then can
calculate the energy loss of a heavy quark traversing this medium to
NLO.

[

∂

∂t
+ v · ∇r −∇pD(p, t)∇p

]

f̄ = C[f̄ ]

with

Dij =

∫ t

−∞
dt′

〈

Fi(r̄(t
′), t′)Fj(r̄(t), t)

〉

F = gQa(Ea + v × Ba) is the color
Lorentz force generated by the turbulent
color fields, and C[f ] denotes the collision
term.
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3D Colored-Particle-in-Cell Simulations (CPIC)

Can also simulate particle-field systems in real-time using 3D
Colored-Particle-in-Cell (CPIC) codes. Includes large-angle deflec-
tion of particles by their self-generated fields.

Include back-reaction by solving collisional
QCD transport equations without lineariza-
tion

pµ[∂µ−gqaF a
µν∂ν

p−gfabcA
b
µqc∂qa ]f(x, p, q) = C[f ]

Coupled to the Yang-Mills equation for the
soft gluon fields

DµFµν = Jν = g

∫

d3p

(2π)3
dq q vνf(t,x,p, q)

A. Dumitru, Y. Nara, and MS, hep-ph/0604149; A. Dumitru, Y. Nara, B. Schenke, and MS, forthcoming.
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Using CPIC to study jet broadening via instabilities

Can use CPIC code to simulate parton transport through self-
consistently generated color-field backgrounds!

Jets are modelled as additional high-energy “test particles”. Using this
code we can perform real-time measurements of jet (statistical)
properties.
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“The Ridge” – Open questions

• Need data on η-broadening of the away-side jet.

• If this is a medium effect then the ridge should appear there as
well.

• Detailed analysis of near-side jet average path length is
necessary.

• Surface bias implies relatively short path length in which to
generate the effect.
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- Electromagnetic Observables -
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E&M Probes to determine plasma isotropization time

• Can we experimentally determine when/if the plasma becomes
locally isotropic in momentum-space?

• Need observables which provide complementary ways of probing
early-time dynamics.

• Ideal candidates for this are E&M observables, eg photon and
dilepton emission.

• Dependence of photon rate on anisotropy has been evaluated to
LO (Schenke and MS, hep-ph/0611332); however, photons are
notoriously difficult for experimentalists to measure due to large
backgrounds.

• Dileptons offer a better opportunity since one can study production
as a function of invariant pair mass (photon virtuality) and
transverse momentum.
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Dileptons from an Anisotropic Plasma

• The dilepton rate d4R/d4p depends on plasma
anisotropy and the angle of the dilepton pair with
respect to the beam axis.   

q̄

q l+

l -

• To leading order it can be obtained using anisotropic momentum
space distributions of the form

f q,q̄(p,x) = f q,q̄
iso

(

p2
T + (1 + ξ)p2

L

)

• ξ = 0 gives isotropic plasma and ξ = 10 corresponds to a squish
by a factor of approximately three along the longitudinal
momentum direction.

〈p2
T 〉

〈p2
L〉

∼ 1 + ξ

M. Guerrero and MS, forthcoming.
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Dileptons from an Anisotropic Plasma

For a free streaming plasma

ξ(τ) =

(

τ

τ0

)2

− 1

lim
τ≫τ0

E(τ) → E0

(τ0

τ

)

“T”(τ) = T0

For an isotropic plasma

ξ(τ) = 0

E(τ) = E0

(τ0

τ

)4/3

T (τ) = T0

(τ0

τ

)1/3

Can construct models which interpolate between free streaming and
isotropic hydrodynamic expansion, eg:
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Space-time evolution incorporating anisotropies (LHC)
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Results - Dileptons vs M

T0 = 845 MeV, τ0 = 0.088 fm/c, Tc = 160 MeV, τ0 ≤ τhydro ≤ 1 fm/c
Cuts: pT > 8 GeV
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Results - Dileptons vs M with backgrounds

T0 = 845 MeV, τ0 = 0.088 fm/c, Tc = 160 MeV
Cuts: pT > 8 GeV
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Results - Dileptons vs PT

T0 = 845 MeV, τ0 = 0.088 fm/c, Tc = 160 MeV, τ0 ≤ τhydro ≤ 2 fm/c
Cuts: M > 2 GeV
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Results - Dileptons vs PT with backgrounds

T0 = 845 MeV, τ0 = 0.088 fm/c, Tc = 160 MeV
Cuts: 0.5 < M < 1 GeV

2 4 6 8 10

PT @GeVD

-9

-8

-7

-6

-5

-4

-3

lo
g

1
0
Hd

N
e

+
 e

-

�d
y

d
M

2
@G

e
V

-
2
DL

τ hydro = 2 fm�c

τ hydro = 0.08 fm�c

Jet Conversion

Drell Yan

M. Guerrero and MS, forthcoming.
Michael Strickland p. 29/36



- Anomalous Viscosity -
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Possibility of Anomalous Viscosity
• These large amplitude color fields can be thought of as a

highly-populated ensemble of low-momentum or "soft" particles.
• In the presence of such large fields one must revisit basic

calculations such as the calculation of the viscosity.∗

• In a weakly-coupled isotropic + high-temperature thermal system
the viscosity is related to the collisional mean free path of the
partons†

η ∼ λfT
4 ∼

T 3

g4 log(1/g)

λhard ∼
1

g4T

λsoft ∼
1

g2T

†Arnold, Moore, Yaffe, hep-ph/0010177. ∗ Asakawa, Müller, and Bass, hep-ph/0608270
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Anomalous Viscosity (cntd)
• Asakawa, Müller, and Bass have recently (hep-ph/0608270)

performed a computation of the viscosity due to large-amplitude
turbulent field configurations.

• Therein they compute the mean free path of a particle propagating
in such a background and find

λ
(A)
f ∼

p̄2

g2Q2〈E2 + B2〉rm

ηA

s
=

1

g3/2

(

(N2
c − 1)Tτ

10b0Nc

)1/2

ηA/s is not bound from below by the AdS-CFT bound.
Asakawa, Müller, and Bass, hep-ph/0608270
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Conclusions
• Anisotropic plasmas are qualitatively different than isotropic ones.
• Unstables modes result in spontaneous generation of large

amplitude soft background fields.
• These non-equilibrium fields can modify fundamental properties of

a quark-gluon plasma such as viscosity, 3d jet diffusion, plasma
thermalization time, etc.

• We now have simple models which allow us to calculate the effect
of anisotropies on experimental observables, eg jet and E&M
signatures. More to come . . .

• There is continuous advancement in the numerical techniques
which can be used for simulating non-equilibrium gauge dynamics.

• At LHC energies, our dilepton results show a window from pT ∼ 3 -
7 GeV where is it possible to determine much-needed information
about the initial 1 fm/c of the QGP’s lifetime.
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- Backup Slides -
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Cause for despair

Naive application of resummed finite-temperature perturbation theory
to thermodynamics fails to converge at any reasonable temperature so
should we abandon it?

PQCD/Pideal = 1 −
15

4

αs

π
+ 30

(

αs

π

)3/2

+
135

2

(

log
αs

π
−

11

36
log
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2πT
+ 3.51

) (

αs

π

)2

+
495

2

(

log
µ

2πT
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) (
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3
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Cause for (limited) hope

4d Lattice "Pure Glue" (Boyd et al)

   Hard Thermal Loop
   Perturbation Theory
   (Andersen, Braaten, 
   Petitgirard, MS)

NLO Approximately 

Self-Consistent

HTL Phi-Derivable

(Blaizot, Iancu, Rebhan)
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