

## Outline

- A landmark study: Explore the phase diagram of strongly interacting matter
- RHIC capabilities for the study:
  - Accelerator status
  - Experimental status, planned upgrades
- What do we know? What to look for? Physics observables in the energy scan



2

# Motivation

Explore the phase diagram of strongly interacting matter

- Theoretical constraints:
  - T = 0 First order phase transition
  - $\mu_B = 0, T = T_C$  Crossover
  - Critical Point at finite  $\mu_B$
- Experimental constraints
  - Signatures for deconfinement at RHIC and top SPS
  - Disappearance of these signatures at SPS energies?



# Introduction RHIC @ BNL

- Has already explored an important part of the phase diagram:
  - Signatures for deconfinement
  - Studying properties of deconfined matter
- Energy/System size scan up to now

|              | 200          | 130          | 62.4             | 20           |  |
|--------------|--------------|--------------|------------------|--------------|--|
| Au+Au        | $\checkmark$ | $\checkmark$ | $\checkmark$     | $\checkmark$ |  |
| Cu+Cu        | $\checkmark$ |              | $\checkmark$     | $\checkmark$ |  |
| p+p          | $\checkmark$ |              |                  |              |  |
|              |              |              |                  |              |  |
| Tim Schuster |              |              | RHIC Energy Scan |              |  |



Critical point and 1st order phase transition line are *the* landmarks - are they accessible at RHIC?

| Tim Schuster | RHIC Energy Scan | VI-SIM Bad Liebenzell | 1214. 09. 2007 | 4 |
|--------------|------------------|-----------------------|----------------|---|
|              |                  |                       |                |   |

## Introduction First Ideas for RHIC-Low Energy

- Fixed target RHIC program  $10 < E_{\text{Beam}} < 100 \, A \text{GeV}$
- Cross-check the structures seen in hadron production excitation functions
- Use BRAHMS, NA49 detector?

100 cm

Forward Spectrometer (FS)

**RHIC Energy Scan** 

**BRAHMS Experimental Setup** 

Mid Rapidity Spectrometer

C4

TOFW

TPM2

D5

Sima

& TMA

Tim Schuster



12.-14.09.2007

5

VI-SIM Bad Liebenzell

## Accelerator Fixed Target vs Collider Mode

Advantages of collider mode over fixed target:

- Acceptance stays constant with energy
- Spatial track density rises slower



#### Accelerator Collider Mode

Potential collider mode drawbacks:

#### Trigger

Zero Degree Calorimeters not usable at low energy

→ Beam Beam Counters receive sufficient hits to be used  $\checkmark$ 

#### Rate

Injection energy from AGS: 9.8 GeV/u per beam  $(\sqrt{s_{\rm NN}} = 19.6 \,{\rm GeV})$ 

 $\gamma^2$  scaling of luminosity at higher energies.

Scaling for energies below normal injection energy unknown



### Accelerator Status

First test runs below standard injection energy:

- June 2006:  $\sqrt{s} = 22.5 \text{ GeV p+p}$
- July 2007:  $\sqrt{s_{NN}} = 9.2 \text{ GeV Au+Au}$

Au+Au collisions @  $\sqrt{s_{NN}}$  = 9.2 GeV seen in the STAR detector on June 7, 2007:



## Accelerator Status

First test run below design injection energy exceeded optimistic estimate for low energy luminosity

| $\sqrt{s_{ m NN}}$ | $E_{ m Lab}$ | BBC<br>Coinc. Rate | Days /<br>M Events | Desired<br>Statistics | Beam Days |
|--------------------|--------------|--------------------|--------------------|-----------------------|-----------|
| 4.6 GeV            | 10 AGeV      | 3 Hz               | 9                  | 5M                    | 45        |
| 6.3 GeV            | 20 AGeV      | 7 Hz               | 4                  | 5M                    | 20        |
| 7.6 GeV            | 30 AGeV      | 13 Hz              | 2                  | 5M                    | 10        |
| 8.8 GeV            | 40 AGeV      | 20 Hz              | 1.5                | 5M                    | 7.5       |
| 12 GeV             | 80 AGeV      | 54 Hz              | 0.5                | 5M                    | 2.5       |
| 18 GeV             | 158 AGeV     | > 100 Hz           | 0.25               | 5M                    | 1.5       |
| 28 GeV             | 410 AGeV     | > 100 Hz           | 0.25               | 5M                    | 1.5       |

Planned energy scan: Au+Au at 7 energies (NA49 + 2)

= 3 months of run X

• Test run at  $\sqrt{s_{\text{NN}}} = 5 \text{ GeV}$  (at the end of run VIII) will show the scaling for lower energies

• Electron cooling in AGS (RHIC) would increase luminosity by another factor of 10 (100)

# Accelerator Conclusion



- RHIC is capable to extend existing program into the low energy region in collider mode
- Theoretical predictions see critical point in energy range  $5 < \sqrt{s_{NN}} < 20 \text{ GeV}$
- RHIC gives access to the whole range with sufficient statistics

# ExperimentsSTAR and PHENIX



- Two commissioned, proven detectors: STAR and PHENIX ...with forming low energy working groups
- Large acceptance:  $2\pi$  (STAR) and wide  $p_T$  range for PID

# Physics **Observables** Spectra and yields Fluctuations K/π $< p_T >$ Flow $v_2$ scaling behavior $\Omega$ and $\phi$ $v_2$ Disappearance of proton $v_2$ at 40 GeV? HBT Heavy flavor mesons, di-leptons

12.-14.09.2007

# Physics

## Observables

- <u>Spectra and yields</u>
- <u>Fluctuations</u>
  - **-** <u>K/π</u>
  - <*p*<sub>T</sub>>
- <u>Flow</u>
  - $v_2$  scaling behaviour
  - $\Omega$  and  $\phi v_2$
  - Disappearance of proton  $v_2$  at 40 GeV?
- HBT
- Heavy Flavor Mesons, Di-Leptons

13

# Observables Spectra and Yields



Non-monotonous structures in SPS energy region



Interpretation under discussion - Systematic re-measurement of all strange hadrons for  $5 < \sqrt{s_{NN}} < 200$  GeV will hopefully solve the issue

Current SPS data seen as "*suggestive but inconclusive*" (Paul Sorensen)

Hyperons at AGS energies: FAIR? NICA?

| VI-SIM Bad Liebenzell | 1214. |
|-----------------------|-------|
|                       |       |

09.2007

# Observables $K/\pi$ Fluctuations



- Positive dynamical fluctuations, rising fast towards low SPS energies
- Only excitation function of a fluctuation observable not being described by hadronic model

#### Observables $K/\pi$ Separation: STAR TOF

#### Measurement is tricky at RHIC:

- Kaon efficiency in collider lower (due to decay,  $c\tau = 3.7$ m)
- K/ $\pi$  separation by d*E*/d*x* in TPC ambiguous above p = 0.5 GeV/c
- Misidentification has large impact on flucuations
- STAR TOF will enhance unambiguous kaon sample - full barrel TOF completed in 2009





# Observables Flow



Probe the early stage of the collision:

Test for initial pressure and degrees of freedom

| Tim Schuster | RHIC Energy Scan | VI-SIM Bad Liebenzell | 1214.09.2007 | 18 |
|--------------|------------------|-----------------------|--------------|----|

# Observables Flow



#### Observables Flow



Proton  $v_2$  collapse as signal for deconfinement

- Difference between methods: Depends on  $v_2$  fluctuations and non-flow contributions
- Azimuthally symmetric detector STAR can measure event-by-event flow vector
- STAR event plane resolution makes measurement with smaller error possible
- Event plane detector as upgrade under discussion

20

# Conclusion Comparison of Programs

Large worldwide efforts to scan the phase diagram:

- The RHIC energy scan will provide a systematic study over a wide energy range (total covered range:  $5 < \sqrt{s_{NN}} < 200 \text{ GeV}$ ) with large acceptance independent of energy
- CBM at FAIR will add the measurement of rare probes at lower energies
- The program at SPS adds the complementary system size scan and a larger rapidity coverage