The ALICE experiment

Dariusz Miśkowiec (heavily based on a presentation by Christoph Blume, thanks!)

Monbachtal, Sep-2007

Heavy ion physics at LHC

ALICE detector setup

Section 2018 Physics topics and performance

Running plans

Sources of information

I995 ALICE Technical Proposal

CERN-LHCC 95-71

Physics Performance Report, Volume I

J.Phys.G 30(2004)1517-1763

physics topics, LHC conditions, detector summary, computing

Physics Performance Report, Volume II

J.Phys.G 32(2006)1295-2040

combined detector performance, event reconstruction

LHC experiments

ALICE, D. Miskowiec

physics questions at LHC

ATLAS, CMS, LHCb:

electroweak symmetry breaking origin of mass of quarks and gauge bosons supersymmetric particles CP violation

ALICE:

chiral symmetry breaking origin of mass of hadrons deconfinement hadronization

ALL:

understanding high energy nuclear interactions (input needed for cosmic ray studies)

ALICE programme

mission:

create quark-gluon matter study its properties quantitatively be prepared for unexpected = be versatile

methods:

spectra and correlations of various particles

e.g. heavy quarks (open beauty, upsilon-states) jets in heavy ion environment weakly interacting probes (Z^0 , W^{\pm})

special at LHC:

higher energy density larger system more heavy quarks and jets weak probes W/Z available access to lower x

	SPS	RHIC	LHC
√s _{nn} (GeV)	17	200	5500
dN _{ch} /dy	~450	~850	1500-4000
ε(GeV/fm³)	3	5	15-60
τ _{QGP} (fm/c)	<i>≤</i> 2	2-4	≥10

Detector Requirements

Robust tracking performance

Needs to digest highest multiplicities (*O*(10⁵) tracks !)

Need to cover low p_t region (~100 MeV/c)

Soft physics important for event characterization

But the high $p_{\rm t}$ region as well (>100 GeV/c)

Hard probes transmit information about early phase

Good PID capabilities over large p_t -range essential Many effects are flavour dependent

Sensitivity to rare probes

Heavy flavour, quarkonia, photons, ...

The Alice Collaboration

ALICE, D. Miskowiec

Alice Detector

Acceptance for Charged Hadrons

Sentral barrel -0.9 < η < 0.9</p>

ITS,TPC,TRD,TOF 2 π tracking, PID HMPID single arm RICH PHOS single arm EM cal EMCAL jet calorimeter (proposed)

Interpretent interpretent in the second second

absorber, 3 Tm dipole magnet 10 tracking + 4 trigger chambers

• multiplicity -5.4 < η < 3

PMD including photon counting

- trigger & timing
 - FMD: silicon strip multiplicity det
 - T0: ring of quartz window PMT's
 - V0: ring of scintillator paddles
 - 6 Zero Degree Calorimeters

Inner Tracking System (ITS)

6 Layers with three different detector technologies:

> Silicon Pixel Detector Silicon Drift Detector Silicon Strip Detector ITS = SPD+SDD+SSD

Layer		R (cm)	σrφ (μm)	σΖ (μm)
1	SPD	4	12	100
2	SPD	8	12	100
3	SDD	15	38	28
4	SDD	24	38	28
5	SSD	38	17	800
6	SSD	43	17	800

Time Projection Chamber (TPC)

TPC

Transition Radiation Detector (TRD)

Transition Radiation Detector (TRD)

Drift chamber Gas: Xe-CO₂ Drift length: 3cm Radiator Fiber/foam sandwich PP, 17μm e/π-discrimination ~ 10⁻² For 90% e-efficiency

TOF

Sep-2007

ALICE, D. Miskowiec

High Momentum Particle Id (HMPID)

High Momentum Particle Id (HMPID)

Photon Spectrometer (PHOS)

photons, neutral mesons, γ -jet tagging dense PbWO₄ crystals (X₀ < 0.9 cm) at -25°C

~18k channels, 8m²

good energy resolution stochastic: 2.7%/√E noise: 2.5%/E constant: 1.3%

Forward Muon Spectrometer (MUON)

... aka Muon Arm

forward detectors

Sep-2007

ALICE, D. Miskowiec

Trigger

Data processing aka offline

Grid

ALICE Event Display

Sep-2007

ALICE, D. Miskowiec

central barrel tracking

Transverse momentum (GeV/c)

ALICE, D. Miskowiec

PID Capabilities

TPC:

$$\sigma(dE/dx) = 5.5(pp) - 6.5(Pb-Pb)$$
 %

 TOF:
 $\sigma < 100 \text{ ps}$

 TRD:
 π suppression $\approx 10^{-2}$ @ 90% e-efficiency

LHC tests the hydro-paradigm

ALICE, D. Miskowiec

Open charm and beauty

c/b

goal:

measure parton energy loss in QGP

expectation:

energy loss color dependent (different for quarks and gluons)

energy loss flavour dependent (smaller for heavy quarks)

advantage at LHC:

high abundance of c and b (direct reconstruction possible)

System	р+р	Pb+Pb (5% cent)
√s _{nn} (TeV)	14	5.5
NN cross section (mb)	11.2 / <mark>0.5</mark>	6.6 / <mark>0.2</mark>
Shadowing		0.65 / 0.85
Total multiplicity	0.16 / 0.007	115 / <mark>4.6</mark>

ALICE, D. Miskowiec

Quarkonia in dielectron channel

Quarkonia in dimuon channel

ALICE, D. Miskowiec

1 month of running		
Ε _τ >	N _{jets}	
50 GeV	2.0 × 10 ⁷	
100 GeV	1.1 × 10 ⁶	
150 GeV	1.6 × 10 ⁵	
200 GeV	4.0 × 10 ⁴	

- øp vs. PbPb
- *calorimetry vs. charged tracks*
- Iriggering
- suppression

Sep-2007

jets in p+pbar at 1.8 TeV

CDF, PRD 64 (2001) 032001

jets in Pb+Pb at 5.5 TeV (ALICE sim)

ALICE, D. Miskowiec

jets with an EM calorimeter (CDF)

jets with charged particles (ALICE ITS+TPC+TRD)

s200 counts

100

D

stunos

200

0

D

200

300

D

130-150

50

100

200-250

100 150 E_T ^{CP} (GeV)

200

E_T^{CP} (GeV)

150

Jets with ITS, TPC, TRD – TRD trigger

Jets with EMCAL

- EM Sampling Calorimeter latest addition to ALICE by US, France, Italy
- Pb-scintillator linear response
 -0.7 < η < 0.7
 60° < φ < 180°
- Energy resolution ~15%/\/E

Jets with both

Jet fragmentation function

ALICE general running plans

initial phase

- ø pilot Pb+Pb
- I-2 years Pb+Pb
- I year p+Pb (or like)
- I-2 years Ar+Ar

subsequent options

- op at sqrt(s) = 5.5 TeV
- N+N or O+O or Kr+Kr...
- another pA
- Iower energy Pb+Pb
- high stat full energy Pb+Pb

LHS schedule as of Aug-2007

ALICE status Sep-2007

ACORDE: installed. DAQ, DCS, ECS connection ongoing

- **EMCAL:** support ready to be installed.
- *FMD:* 2/3 installed
- *HMPID: installed, going to measure cosmics*
- MUON: nearly completely installed
- **PHOS:** first module under test with cosmics on the surface, installed in Nov
- SDD: installed, tests ³/₄ done.
- SPD: installed, electronics tests
- SSD: installed, electronics tests and debugging

ALICE status Sep-2007

- *TOF: sm0 and sm8 installed, cosmics*
- **TPC:** parking position because of ITS, long term electronics tests
- TRD: sm8 installed, sm0 soon ready to be installed
- **T0:** C-side installed (electronics not yet). A-side installed in Jan
- V0: C-side installed (electronics not yet). A-side integrated with FMD3 in Oct, installed in Jan
- **ZDC:** *first ZDC installed, second one being installed now*

Startup configuration for 2007:

complete ITS, TPC, HMPID, MUON arm, PMD, V0, T0, ZDC, Accorde partial PHOS(1/5), TOF(9/18), TRD (2-3/18), DAQ (20%)

Heavy ion physics will do a big step ahead with LHC startup Era of precision measurements of the QGP matter

ALICE will be ready for data taking with the first pp run Experimental setup is multi-purpose and flexible

Summary of *foreseen* ALICE physics:

ALICE Physics Performance Report, Vol. II, J. Phys. G32 (11), 2137 (2006)