

Heavy Ion Physics with the CMS Experiment at the LHC

Christof Roland Massachusetts Institute of Technology for the CMS Collaboration

> VI-SIM Workshop on Heavy Ion Physics Perspectives Bad Liebenzell, Germany, 2007

CMS HI groups: Athens, Auckland, Budapest, CERN, Chongbuk, Colorado, Cukurova, Ioannina, Iowa, Kansas, Korea, Lisbon, Los Alamos, Lyon, Maryland, Minnesota, MIT, Moscow, Mumbai, Seoul, Vanderbilt, UC Davis, UI Chicago, Zagreb

Heavy Ion Physics at the LHC

Pb+Pb Collisions at $\sqrt{s_{NN}} \sim 5.5 \text{TeV}$ Large Cross section for Hard Probes High luminosity $10^{27}/\text{cm}^2\text{s}$

- Copious production of high p_T particles
 - Nuclear modification factors R_{AA} out to very high p_{T}
- Large cross section for J/ ψ and Υ family production
 - $\sigma^{cc}_{LHC} \sim 10 \times \sigma^{cc}_{RHIC}$
 - $\sigma^{bb}_{LHC} \sim 100 \text{ x} \sigma^{bb}_{RHIC}$
 - Different "melting" for members of Υ family with temperature
- Large jet cross section
 - Jets directly identifiable
 - Study in medium modifications

Kinematics at the LHC

Access to widest range of Q² and x

The Detectors

Designed for precision measurements in high luminosity p+p collisions

In Heavy Ion Collisions:

Functional at highest expected multiplicities Detailed studies at $\sim dN_{ch}/d\eta \sim 3000$ cross-checks up to 7000-8000

Detector Concept

- Hermeticity, Resolution, Granularity
 - Central region $\Delta\eta$ ~5 equipped with tracker, electromagnetic and hadronic calorimeters and muon detector
- Forward coverage
 - Calorimetric coverage of Δη~10
 - Additional calorimeters proposed to extend the coverage: CASTOR $\Delta\eta$ ~14
 - Zero Degree Calorimeter (ZDC)
- High data taking speed and trigger versatility

CMS Tracking Performance

Tracking at low p_T

- Changes to tracking algorithms allow access to low \textbf{p}_{T} particles

- Reconstruct three hit tracks in the pixel system
- Good efficiency to ~ 300MeV/c in Pb+Pb
- Particle ID by dE/dx in Silicon

The Muon Stations

Muon Reconstruction

- Tag from Muon chambers
- Momentum resolution from Silicon Tracker
 - Barrel p_T^{μ} > 3.5, Endcap p_L^{μ} > 4.0 to penetrate the absorber
- Excellent mass resolution for J/ψ and Y states
- Coverage in the central rapidity region
- Muon reconstruction is available in the High Level Trigger

$J/\psi \rightarrow \mu\mu$

mass resolution and acceptance

Υ→μμ

Mass resolution and acceptance

- CMS has a very good acceptance in the Upsilon mass region
- The dimuon mass resolution allows to separate the three Upsilon states:
 - ~ 54 MeV/c2 within the barrel and
 - ~ 86 MeV/c2 when including the endcaps

O. Kodolova, M. Bedjidian, CMS note 2006/089

The Calorimeters: Jet Reconstruction

Jet $E_T \sim 100 \text{GeV}$, Pb Pb background $dN_{ch}/dy \sim 5000$

Jet in pp

Jet superimposed on Pb Pb background

Jet in Pb-Pb after pileup subtraction

- A modified iterative cone algorithm running on calorimeter data gives good performance in Pb Pb collisions
- Offline jet finder will run in the HLT

•CMS has a two-level DAQ/Trigger architecture:

- L1: Low level hardware trigger
 - Muon track segments
 - Calorimetric towers
 - No tracker data
 - Output rate (Pb+Pb): 1-2 kHz
- HLT: Powerful online farm doing event building triggering
 - ~12k CPU cores
 - Full event information available
 - Use "offline" code to trigger
 - Fully flexible
 - Data storage bandwidth 225 MB/s
 ~100 PbPb Events/s (min. bias)

Special HI Triggers:

- DiMuon Trigger Y, J/psi
- Jet Trigger with background subtraction
- High E_T Photon Trigger
- Centrality

CMS

Others

•Every event accepted by L1 trigger must pass through online farm (HLT)

Bad Liebenzell 2007

High Density QCD with Heavy lons

High Density QCD with Heavy Ions Physics Technical Design Report, Addendum 1

...with the CMS detector

HI-Physics TDR published March 2007

Physics cases for HI@CMS

Case no.	We will look into	in order to learn about		
0	MB L1 trigger, centrality	Global event characterization		
1	dN _{ch} /dη	Color Glass Condensate, xG _A (x,Q ²)		
2	Low p _T π/K/p spectra	Hydrodynamics, Equation of State		
3	Elliptic Flow	Hydrodynamics, Medium viscosity		
4	Hard-probes (triggering)	Thermodynamics & transport properties		
5	Quarkonia suppression	ε _{crit} , T _{crit}		
6	Jet "quenching"	Parton density, <q> transport coefficient</q>		
7	Upsilon photoproduction	CGC and xG _A (x,Q ²)		

dN/dη

Charged Particle Multiplicities

- Predictions vary by a factor of 4!
- dN/dy ~ 1500 7000
- (RHIC extrapolation vs. HIJING)

Low p_T tracking and PID

- p_T down to 200–300 MeV/c !
 - Using dE/dx information from analog pixel readout
- Pions, kaons and protons resolved...
- ...opening the way for V0 reconstruction

dN/dp_T

Use the tracker to measure v2 differentialy in p_{T} and η

- Event plane and v2 determined from independent sub-events
- No non-flow corrections applied
- Compare v2 extracted from simulated particles and reconstructed tracks
- The p_T and η dependences of v2 can be reconstructed with high accuracy.

Hard Probes: HLT vs Min Bias

$J/\psi, Y$ and Jet reconstruction available at HLT

Example trigger table:

Channel	Threshold	Pre-scale	Bandwidth [MByte/s]	Event size [MByte]
min. bias	—	1	33.75 (15%)	2.5
jet	100 GeV	1	24.75 (11%)	5.8
jet	75 GeV	3	27 (12%)	5.7
jet	50 GeV	25	27 (12%)	5.4
${ m J}/\psi$	0 GeV/c	1	67.5 (30%)	4.9
Υ	0 GeV/c	1	2.25 (1%)	4.9
$\gamma^{ m prompt}$	10 GeV	1	40.5 (18%)	5.8
UPC/forward	—	1	2.25 (1%)	1

HLT improves hard probe statistics by more than a factor of 10!

p_T reach of quarkonia (for 0.5 nb⁻¹)

• Expected rec. quarkonia yields:

- J/ψ : ~ 180 000
- Υ : ~ **26 000**
- Detailed studies of Upsilon family feasible with HLT
- Statistical accuracy (with HLT) of expected Υ' / Υ ratio versus p_T -> model killer...

- Jet-trigger allows R_{AA} measurement to $p_T > 200 \text{ GeV/c}$
- Reach improved by x 2 compared to min. bias.

High p_T Suppression

Clear separation of different energy loss scenarios

Jet Shapes: RHIC vs. LHC

• LHC: study fully formed Jets

- Directly reconstruct Jet axis and energy!
- Removes trigger biases

Pb-Pb, 0.5 nb⁻¹, HLT-triggered

• Jet spectra up to $E_T \sim 500 \text{ GeV}$

 Detailed studies of medium-modified (quenched) jet fragmentation functions

What can we measure in Heavy lons?

- Some example Jets observables using Calorimetry
 - **Probe energy loss of the leading parton**
 - Jet cross sections
 - Jet Jet correlations
 - Jet- γ/Z correlations

and particle reconstruction

Study details of the energy loss mechanism

- Jet fragmentation functions
- Jet shapes
- Tagged heavy quark jets
- Inclusive p_T spectra
- Back-to-back particle correlations

Jet quenching with calibrated parton energy

- Use photon to determine initial parton energy
- Use jet to determine away-side parton direction
- Use tracked hadrons on away-side to measure in-medium fragmentation function
- Z⁰/Photon-tag avoids surface bias (c.f. two-hadron correlations)
- Direct test of energy loss mechanism using well controlled process

Summary

The CMS Detector features

- Precision tracker (full silicon, analog readout)
- a state-of-the-art Calorimetry
- large acceptance muon stations
- a powerful DAQ & HLT system
- This provides excellent capabilities to perform high precision studies of the dense QCD matter produced in very high energy heavy-ion collisions, through
 - Global observables linked to hydrodynamic properties and soft physics
 - hard probes such as high- $E_{\rm T}$ (fully reconstructed) jets and heavy quarkonia
- Known limitations:
 - Manpower!
 - If interested please apply :-)

Backup Slides

Trigger in Pb+Pb vs pp

Level 1 Trigger

- Uses custom hardware
- Muon chamber + calorimeter information
- Decision after ~ 3µsec

Level-1	Pb+Pb	p+p	
Collision rate	3kHz (8kHz peak)	1GHz	
Event rate	3kHz (8kHz peak)	40MHz	
Output bandwidth	100 GByte/sec	100 GByte/sec	
Rejection	none	99.7%	

High Level Trigger ←

Main "hardware" task for CMS heavy ion running

- ~1500 Linux servers (~12k CPU cores)
- Full event information available
- Runs "offline" algorithms

High Level Trigger	Pb+Pb	p+p	
Input event rate	3kHz (8kHz peak)	100kHz	
Output bandwidth	225 MByte/sec	225 MByte/sec	
Output rate	10-100Hz	150Hz	
Rejection	97-99.7%	99.85%	

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Event-by-event background subtraction:

- Calculate <E_T^{Tower}(η)> and D^{Tower}(η) for each η ring
- Recalculate all E_T^{Tower} tower energies: $E_T^{Tower} = E_T^{Tower} - E_t^{pile-up}$

 $E_t^{\text{pile-up}} = \langle E_T^{\text{Tower}}(\eta) \rangle + D^{\text{Tower}}(\eta)$

- Negative tower energies are replaced by zero
- Find Jets with E^{jet} > E^{cut} using standard iterative cone algorithm using new tower energies
- Recalculate pile-up energy with towers outside of the jet cone
- Recalculate tower energy with new pile up energy
- Final jets are found with the same iterative cone algorithm $E_T^{\text{Jet}} = E_T^{\text{cone}} - E_t^{\text{pile-up new}}$

Efficiency, Purity vs. Jet Energy

Reconstructing 50-300 GeV Jets in Pb-Pb background

• EFFICIENCY

- Number of events with true reco. Jets/Number of all generated events
- PURITY
 - Number of events with true reco. QCD Jets/ Number of all reco. Jet events (true+fake).
- Threshold of jet reco. E_T >30 GeV.
- Above 75(100) GeV we achieve
 - 100% efficiency and purity in the barrel (endcap)
 - Unbiased jet measurement

Jet reconstruction performance

Efficiency and purity

E_T: resolution

Granularity

Rapidity coverage	0 <	$\eta < 1.5$	$1.5 < \eta $	< 3.0	$3.0 < \eta < 5.2$
Subdetector	HCal (HB)	ECal (EB)	HCal(HE)	ECal (EE)	HF
$\sigma/E = a/\sqrt{E} \bigoplus b$					
a	1.16	0.027	0.91	0.057	0.77
b	0.05	0.0055	0.05	0.0055	0.05
granularity				changes from	
$\Delta \eta \ge \Delta \phi$	0,087 x 0.087	0.0174 x 0.0174	0.087 x 0.087	0.0174 x 0.0174	0.175 x 0.175
			(except highest η)	to 0.05x0.05	

Trigger and charged particle multiplicity

N_{ch} (3<|∆ղ|<5)

- Minimum bias trigger
 - Symmetric number of hits in the forwards calorimeters (3<|η|<5)
 - High-efficiency up to very peripheral Pb-Pb collisions
- Centrality triggers
 - From correlating barrel (ECAL+HCAL) and forward (ZDC) energies

- Charged particle multiplicity
 - Event-by-event, using hits in the innermost pixel layer with ~2% accuracy and systematics below 10%

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

_ _