Feedback as a Method to Control Beam Instabilities in the SPS

J. M. Cesaratto¹

LHC Accelerator Research Program (US-LARP) collaborators:

J. D. Fox¹, M. Pivi¹, K. M. Pollock¹, C. Rivetta¹, O. Turgut¹
G. Arduini², H.Bartosik², W. Hofle², K. Li², G. Rumolo², U. Werhle²
S. De Santis³, Z. Paret³, R. Secondo³, J.-L. Vay³
D. Alesini⁴, A. Drago⁴, A. Gallo⁴, F. Marcellini⁴, M. Zobov⁴

 ${}^{1}\text{Accelerator Research Department, SLAC National Accelerator Laboratory} \\ {}^{2}\text{BE-RF Group, CERN} \\ {}^{3}\text{Center for Beam Physics, Lawrence Berkeley National Laboratory} \\ {}^{4}\text{INFN} - \text{LNF} \\ \end{array}$

November 15, 2012

*Work supported by the U.S. Department of Energy under contract DE-AC02-76SF00515 and US-LARP.

J. M. Cesaratto

Young Scientist Talk

November 15, 2012

Overview

1 My background

- 2 Toohig fellowship
- 3 Electron cloud instability
- **4** Feedback as part of the HiLumi LHC project
 - SPS bunch excitation MDs
 - Bunch-excitiation synchronization
 - Kicker design study

3

A D > A D >

Education, background, previous experience

- Undergraduate studies completed at John Carroll University in Cleveland, OH. BS in Physics, 2005
- Trained as a nuclear physicist at the University of North Carolina in Chapel Hill, NC. MS, 2008; PhD, 2011
- Masters thesis design and construct a high intensity, low-energy proton source
- Applications in nuclear astrophysics, measuring nuclear reactions important for stellar burning
- Need very intense beams to probe very small nuclear cross sections
- Goal: produce 1 mA average proton beam on target at 200 keV

Laboratory for Experimental Nuclear Astrophysics

Low-energy facility solely devoted to making measurements of astrophysical importance Student operated and maintained

3.5	C
 IVI.	Cesaratto

Young Scientist Talk

November 15, 2012

A 3 b

э

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

My background

LENA ECR Ion Source and 200 kV Accelerator

- Compact ion source to fit on isolated, high potential table top
- Utilizes NdFeB permanent magnets to produce the 875 G mirror field on axis to drive electron cyclotron resonance
- Plasma driven with microwave frequency of 2.45 GHz
- Beam extracted at 15 kV and accelerated electrostatically up to 200 kV
- Produces 1.5 mA proton beam on target at $E_p = 100 - 200 \text{ keV}$
- Emittance: 0.19 π -mm-mrad
- Used this new accelerator for a measurement of 23 Na $(p,\gamma)^{24}$ Mg at astrophysical energies - PhD thesis Cesaratto et al. Nucl. Instrum. Meth. A 623, 888 (2010).

Young Scientist Talk

Dr. Timothy Toohig, S.J.

- As many of you know, through LARP, Toohig fellows participate in LHC research and operations.
- Fellowship is in honor of Dr. Timothy Toohig, S.J., physicist and Jesuit priest.
- Provides young PhDs a unique opportunity to participate in research at a US national laboratory and at CERN.
- November 2011, I joined LARP in the accelerator research division at SLAC National Accelerator Laboratory.
- With very broad interests, I began working with the feedback and dynamics group.

November 15, 2012

・ロト ・ 同ト ・ ヨト ・ ヨト

Electron cloud instability

- The synchrotron radiation produces photoelectrons from interaction with the beam pipe walls.
- These secondary and photoelectrons are accelerated by the beam and can hit the beam pipe walls creating more electrons, an avalanching effect "cloud"
- The interaction of this cloud with the beam can cause bunch instabilities, i.e., unstable transverse motion, emittance blowup, bunch lengthening, and vacuum pressure increase
- Intensity dependent effect! Limits the beam intensity in the machine. F. Ruggiero and X. Zhang, AIP Conf. Proc. 496 p. 40 (1999).

J. M. Cesaratto

Beam instabilities in the SPS

- Studies over the last decade have shown the presence of the electron cloud effect in the SPS
 - Emittance blowup
 - Unstable bunch motion
 - Tune shift
 - Intensity loss
- For the LHC to reach the luminosity increase desired, a factor of 10 beyond designed luminosity, these effects must be suppressed and/or mitigated
- Several proposed methods:
 - Beam scrubbing conditioning the accelerator
 - Operate with alternative operating parameters, Q20 vs. Q26 optics
 - Beam chamber coatings with amorphous carbon or other low secondary emission yield (SEY) materials
 - Clearing electrodes
 - Feedback systems
- Feedback could be used to address transverse mode coupling instability (TMCI)

J. M. Cesaratto

Young Scientist Talk

November 15, 2012

3

8 / 24

Feedback effort

- Provide another method to control beam instabilities, used in conjunction with the above proposed methods
- Non-permanent, active, so it can be turned on/off as necessary

- Back end of system can be used as beam diagnostic
 - Excitation of intra-bunch motion, head-tail, higher order modes
 - Understand complex bunch dynamics
 - Excitation with band filtered random noise

J. M. Cesaratto

Young Scientist Talk

November 15, 2012

・ロト ・ 同ト ・ ヨト ・ ヨト

Beam excitation MDs

• Apply amplitude modulated RF signals to the bunch at 3.2 GS/s with excitation system, wideband amplifiers and bandwidth limited exponential tapered stripline

- Single bunch excitation measurements performed to date, will expand to multibunch
- Measure beam response with exponentially tapered stripline, hybrid coupler to produce the sum and difference (vertical) signals.
- Sum/difference acquired at 20 GS/s by oscilloscope

- Signal is synchronized with SPS RF clock, revolution fiducial, and injection trigger
- These beam excitation studies help to understand the stable bunch dynamics under perturbation

J. M. Cesaratto

Young Scientist Talk

Excitation study results - Mode 0

- Viewing the BPM signal in the time domain is nice, but our eyes are not so good at resolving the frequency content.
- Use FFT to identify modes in frequency domain.
- Excitation signal swept in frequency through betatron tune and first synchrotron sideband
- Strong coupling with mode 0

November 15, 2012

Feedback as part of the HiLumi LHC project SPS bunch excitation MDs

Excitation study results - Mode 0

J. M. Cesaratto

Young Scientist Talk

November 15, 2012

Excitation study results - Mode 1

- Excitation signal swept in frequency through the first synchrotron sideband
- Strong coupling with mode 1 at turn 9000, head-tail motion
- Can see mode 0 excitation from accelerator/lattice parameters, not from excitation signal
- Vector representation of motion, beam slice at model frequency blue \rightarrow mode 0, green \rightarrow mode 1

J. M. Cesaratto

Young Scientist Talk

November 15, 2012

13 / 24

Excitation study results - Many modes

- In this example, clearly excite 4 modes, from ν_{β_y} to $\nu_{\beta_y} + 3\nu_s$
- Beam on verge of instability enables us to excite multiple modes!
- Very complicated motion, still trying to understand motion
- Motion dependent upon accelerator setup, in addition to any perturbations we impart

14 / 24

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Feedback as part of the HiLumi LHC project SPS bunch excitation MDs

Excitation study results - Many modes, time domain

Feedback as part of the HiLumi LHC project SPS bunch excitation MDs

Excitation study results - Many modes, frequency domain

- Very low chromaticity beam
- Drive the beam to instability at 15k turns
- Loss of beam intensity, notice sigma signal from pickup
- Observe by slice: slice 105 shows +/- modes symmetric at turn 8k
- Slice 135 shows as high(low) as mode +6(-3), negative modes

- Very low chromaticity beam
- Drive the beam to instability at 15k turns
- Loss of beam intensity, notice sigma signal from pickup
- Observe by slice: slice 105 shows +/- modes symmetric at turn 8k
- Slice 135 shows as high(low) as mode +6(-3), negative modes

- Very low chromaticity beam
- Drive the beam to instability at 15k turns
- Loss of beam intensity, notice sigma signal from pickup
- Observe by slice: slice 105 shows +/- modes symmetric at turn 8k
- Slice 135 shows as high(low) as mode +6(-3), negative modes

- Very low chromaticity beam
- Drive the beam to instability at 15k turns
- Loss of beam intensity, notice sigma signal from pickup
- Observe by slice: slice 105 shows +/- modes symmetric at turn 8k
- Slice 135 shows as high(low) as mode +6(-3), negative modes

- Very low chromaticity beam
- Drive the beam to instability at 15k turns
- Loss of beam intensity, notice sigma signal from pickup
- Observe by slice: slice 105 shows +/- modes symmetric at turn 8k
- Slice 135 shows as high(low) as mode +6(-3), negative modes

- Very low chromaticity beam
- Drive the beam to instability at 15k turns
- Loss of beam intensity, notice sigma signal from pickup
- Observe by slice: slice 105 shows +/- modes symmetric at turn 8k
- Slice 135 shows as high(low) as mode +6(-3), negative modes

- Very low chromaticity beam
- Drive the beam to instability at 15k turns
- Loss of beam intensity, notice sigma signal from pickup
- Observe by slice: slice 105 shows +/- modes symmetric at turn 8k
- Slice 135 shows as high(low) as mode +6(-3), negative modes

- Very low chromaticity beam
- Drive the beam to instability at 15k turns
- Loss of beam intensity, notice sigma signal from pickup
- Observe by slice: slice 105 shows +/- modes symmetric at turn 8k
- Slice 135 shows as high(low) as mode +6(-3), negative modes

- Very low chromaticity beam
- Drive the beam to instability at 15k turns
- Loss of beam intensity, notice sigma signal from pickup
- Observe by slice: slice 105 shows +/- modes symmetric at turn 8k
- Slice 135 shows as high(low) as mode +6(-3), negative modes

- Very low chromaticity beam
- Drive the beam to instability at 15k turns
- Loss of beam intensity, notice sigma signal from pickup
- Observe by slice: slice 105 shows +/- modes symmetric at turn 8k
- Slice 135 shows as high(low) as mode +6(-3), negative modes

- Very low chromaticity beam
- Drive the beam to instability at 15k turns
- Loss of beam intensity, notice sigma signal from pickup
- Observe by slice: slice 105 shows +/- modes symmetric at turn 8k
- Slice 135 shows as high(low) as mode +6(-3), negative modes

Properly timing the kick

- Excitation of particular bunch modes depends on the frequency at which the bunch is driven
- The efficiency at which you can couple energy into the bunch will depend on synchronization of the bunch with the excitation signal.
- MDs to properly synchronize the bunch with the excitation signal.
- Sweep in time with amplitude modulated sine 200 MHz chirp signal across bucket
- Monitor the RMS motion of the centroid of the bunch to determine proper synchronization
- A minimum in the RMS corresponds to a properly synchronized signal
- Working on methods to improve speed and efficiency

Wideband kicker design study

- Multilab effort between SLAC, LBNL, and LNF to evaluate different kicker structures to be used as a prototype for the wideband feedback project
 - Stripline structures relatively wideband
 - Damped cavities High shunt impedance
 - Slotted structures Used in stochastic cooling, high shunt impedance
- Bandwidth of the kicker structure determined by simulation studies, f = DC 1 GHz desirable.
- Particular initial considerations are shunt impedance, broadband beam coupling impedance, and bandwidth.
- Studies so far show that more than one kicker will necessary to cover such a large band, e.g., a low band and high band.
 - Array of striplines
 - Stripline & slotted structure
 - Stripline & cavities
- Define options and a path to fabrication for CERN SPS kicker

・ロト ・回 ト ・ヨト ・ヨー ・クタマ

Stripline

- Efforts by S. DeSantis and Z. Paret at LBNL
- Estimates of shunt impedance and coupling impedance
- Attractive for low band, say DC 500 MHz
- A single stripline, 10 cm in length, could provide coverage up to 750 MHz
- $\bullet\,$ An array of 4 \times 5 cm striplines could provide coverage up to 1.5 GHz
- At this point looks very necessary for implementation

Cavities

- Efforts by F. Marcellini and A. Gallo at LNF
- Used in conjunction with a stripline kicker
- Use multiple narrow band cavities at harmonics of fundamental frequency, $\omega_0 = 2\pi/\tau_b$
- Very attractive for shunt impedance
- Interesting processing model, decompose kick into a few modes, N independent outputs and power stages
- Time between bunches adequate for filling cavity

Young Scientist Talk

Slotted structures

- Efforts by LNF, SLAC, and LBNL
- Co-propagate kick signal with bunch, waveguides couple to beam pipe by slots
- 1 m long structure evaluated with 40 slots.
- High shunt impedance show with HFSS and moment method calculations
- Calculation of broadband beam coupling impedance with ACE3P and GdfidL
- Attractive option to cover high band, with reasonably large bandwidth

Slotted structures

- Efforts by LNF, SLAC, and LBNL
- Co-propagate kick signal with bunch, waveguides couple to beam pipe by slots
- 1 m long structure evaluated with 40 slots.
- High shunt impedance show with HFSS and moment method calculations
- Calculation of broadband beam coupling impedance with ACE3P and GdfidL
- Attractive option to cover high band, with reasonably large bandwidth

Slotted structures

- Efforts by LNF, SLAC, and LBNL
- Co-propagate kick signal with bunch, waveguides couple to beam pipe by slots
- 1 m long structure evaluated with 40 slots.
- High shunt impedance show with HFSS and moment method calculations
- Calculation of broadband beam coupling impedance with ACE3P and GdfidL
- Attractive option to cover high band, with reasonably large bandwidth

Feedback project in summary

- The SPS wide band transverse feedback project has many diverse areas of accelerator research and development
 - Simulation of feedback varying gain, bandwidth, etc.
 - Beam excitation measurement for characterizing the dynamics of the system
 - Electromagnetic design of wide band kickers
 - Signal processing studies and algorithm development
 - ...
- As a Toohig fellow, this opportunity has afforded me to work with scientists from the US and Europe, to learn and collaborate with the best in the business
- Bring collaborations together, expertise from various areas
- For a project like this, many active areas of research and development, many tasks to complete, just remember...

Rome ne s'est pas faite en un jour

J. M. Cesaratto

Young Scientist Talk

November 15, 2012