

Accelerator Physics Center

Energy Deposition Studies for HiLumi LHC: 140 and 150 mm IR Quads

Nikolai Mokhov (Fermilab)

with WP10 members I. Tropin, Y. Eidelman, K. Gudima, V. Pronskikh, I. Rakhno, S. Striganov (Fermilab) F. Cerutti, L. Esposito (CERN)

2nd Joint HiLumi LHC-LARP Annual Meeting INFN Frascati Nov. 14-16, 2012

OUTLINE

- 140-mm Coil ID Model w/o Inserts
- MARS/FLUKA Results
- 2012 MARS Developments and New IR Model
- First MARS Results for 150-mm ID Quads with W-Inserts
- Summary and Plans

HL-LHC Optics and 140-mm Aperture Quads

150 T/m triplets usable optics models by R. De Maria and S. Fartoukh twiss files at /afs/cern.ch/eng/lhc/optics/SLHCV3.1b/tables

WP10 start:

- round optics, opt_150_0150_0150
- $\beta_x^* = \beta_y^* = 15$ cm with 295 μ rad half crossing angle, vertical
- no beam screen in IT/D1, ~10-mm cold bore for shielding
- baseline 3.7-mm SS beampipe
- 60-mm TAS aperture
- no experimental vacuum pipe

MARS/FLUKA IR Model for 140-mm Coil ID

Simulation Parameters in FLUKA and MARS

- 7×7 TeV pp with the current DPMJET, 40000 events
- L = 5×10^{34} cm⁻² s⁻¹, σ_{in} = 84.46 mb, N = 4.223×10^{9} int/s (σ_{in} = 80 mb in FLUKA)
- MADX field gradients, ROXIE field maps
- $\Delta z = 10 \text{ cm}, \Delta r = 1 \text{ mm}, \Delta \phi = 2 \text{ deg}$
- Cutoff energies: 0.1 MeV (γ), e (1 MeV), 0.001 eV (n) and 0.1 MeV (ch. hadrons, muons and ions)
- Score: power density (mW/g and mW/cm³), absorbed dose, DPA, particle fluxes, dynamic heat load, energy spectra
- Mechanical length L_B is magnetic length L_M + 0.225m×2

Peak power density in innermost 3 mm of coil

HL-LHC-LARP, Frascati, Nov. 14-16, 2012

MARS Peak Values in the Innermost 3 mm of the 140-mm Coil w/o Inserts Value Q1 MCBX1 Q2A PD (mW/cm³) 39 61 32 over inner cable

PD (mW/cm ³) in 3-mm bin	39	61	32	lower it averaged over inner cable width: more relevant for quench stability
Dose (MGy)	290±10	412±7	250±15	*
F _n > 100 keV (cm ⁻²)	5.6×10 ¹⁶	9.5×10 ¹⁶	4.6×10 ¹⁶	
DPA	8.2×10 ⁻⁴	1.2×10 ⁻³	6.1×10 ⁻⁴	

Last 3 rows are integrated at 5×10^{34} cm⁻²s⁻¹ over 3000 fb⁻¹

Peak PD in Q1 is at the quench limit: need a factor of 3 safety marginPeak dose is a factor of 7.5 above the 40-MGy target for insulationPeak DPA is higher of known limits for metals at cryo temperaturesHL-LHC-LARP, Frascati, Nov. 14-16, 2012N. Mokhov: Magnet Energy Deposition Upgrade8

Dynamic Heat Load (W/m) in 140-mm coil ID w/o Inserts

Total Dynamic Heat Load (Watts) in 140-mm coil ID Triplet w/o Inserts

	TAS	QXC1R	MDVA2R	QXDA2R	QXDB2R	MDVB2R	QXC3R
FLUKA	612.5	174.4	91.2	116.5	158.1	39.6	189.6
FLUKA (w/o endparts)		161.8		105.3	146.1		178.4
MARS (w/o endparts)	614.0	154.8	89.6	102.8	142.6	41.7	165.2

2012 MARS15 Developments for HiLumi LHC Needs

Substantial developments on physics and geometry sides

- Particle production *event generators*: inclusive and exclusive; thoroughly benchmarked at intermediate 1 to 12 GeV energies (majority of particles in showers; HARP issues); first comparisons to LHC data
- Low-energy EMS (from 1 GeV down to 1 keV, crucial for energy deposition): new modules plus EGS5 option
- Displacement-per-atom (radiation damage): new module (temperature-dependent, benchmarked); comprehensive 393-nuclide database for neutrons below 20 MeV
- Nuclide inventory (residual activation)

• **ROOT geometry**: flexibility, precision and 3-D graphics

HL-LHC-LARP, Frascati, Nov. 14-16, 2012

DPMJET and LAQGSM vs NA49 and RHIC Data

$T_{p} = 158 \text{ GeV}, NA49$ RHIC p+p, s^{1/2}=17.2 GeV p+p, s^{1/2}=200 GeV p+p, s^{1/2}=200 GeV dn/dy ^ fp/up dn/dy p⁺ π⁻/10 $\pi^{-}/10$ 10 10 p⁻/10 -2 10 -2 10 10 -3 10 -3 10 10 10 10 -5 DPMJET DPMJET DPMJET 10 10 ····· LAQGSM ····· LAQGSM LAQGSM RHIC Data -6 RHIC Data -5 10 10 10 -5 5 0 -5 0 5 -5 -2.5 2.5 5 0 y_{cm} y_{cm} y_{cm}

30 keV to 1 GeV EMS

HL-LHC-LARP, Frascati, Nov. 14-16, 2012

New Neutron DPA Model

New for neutrons from 10⁻⁵ eV to 20(150) MeV: NJOY99+ENDF-VII database, for 393 nuclides: NRT (industry standard) corrected for experimental defect production efficiency n (Broeders, Konobeyev, 2004), where n is a ratio of a number of single interstitial atom vacancy pairs (Frenkel pairs) produced in a material to the number of defects calculated using NRT model. Temperature dependent.

MARS15-ROOT IP5 Model

HL-LHC 150-mm Aperture Quads: First MARS Runs (OK for Q1)

Optics (while waiting for the 150-mm release):

- round optics, opt_150_0150_0150
- $\beta_x^* = \beta_v^* = 15$ cm with 295 μ rad half crossing angle, vertical
- twiss files: /afs/cern.ch/eng/lhc/optics/SLHCV3.1b/tables

Triplet and guads:

- MQXF 150-mm aperture Nb₃Sn guads of August 2012 8.5m Q1 and Q3, 6.77m Q2a and Q2b 140 T/m, 630-mm OD cold mass
- 3.7-mm SS beampipe, 2-mm SS beamscreen and W inserts

(7.5mm max thickness) in mid-planes (as we proposed at WAMDO-2006 and published in PRSTAB, 2006).

- TAS aperture 60 mm OD (currently)
- No experimental vacuum pipe HL-LHC-LARP, Frascati, Nov. 14-16, 2012 N. M

150-mm Nb₃Sn Coil ID Quad with W-inserts

150-mm Aperture Triplet Model

7×7 TeV pp (DPMJET3+MAR15): Event #3

7×7 TeV pp (DPMJET3+MAR15): Event #1

Absorbed Dose at 150-mm Q1 peak with W-inserts

Power density and dose longitudinal peak moved from the non-IP end at z=30.9m to z=29 m

Reduced 5 times in Q1 and 4 times in Q2A compared to the no insert case

Neutron fluence and DPA are slightly up: more neutrons produced in tungsten

MARS Peak Values in the Innermost 3 mm of the 150-mm Coil with 7.5-mm W Inserts

	2017년 1월 18일 - 1월 19일 - 1월 14일 - 1926 - 1939 - 1939 - 1939 - 1939 - 1939 - 1939 - 1939 - 1939 - 1939 - 1939 - 19		이 것같은 것을 다니는 것 같아요. 아님, 아님, 것은 것은 것 같아요. 같아요. 같아요. 같아요. 아님, 나는 것을 다니 것 같아요. 같아요. 같아요. 같아요. 같아요. 같아요.
Value	Q1	MCBX1	Q2A PD a factor of 2
PD (mW/cm ³) in 3-mm bin	8	50	9 lower, i.e. 4 mW/ if averaged over cable width: mor relevant for quer stability
Dose (MGy)	58	330	73.6 MCBX
F _n > 100 keV (cm ⁻²)	1.5×10 ¹⁷	7×10 ¹⁶	1.4×10 ¹⁷ needs insert
DPA (no T-correction)	1.1×10 ⁻³	1.5×10 ⁻³	1.2×10 ⁻³

Last 3 rows are integrated at 5×10³⁴ cm⁻²s⁻¹ over 3000 fb⁻¹

Peak PD in Q1 is 5 and in Q2a is 4 times down, 20-25% of the quench limit!Peak dose in Q1 still above target for insulation, but only by ~50%Peak DPA (with T-correction) is close to the limits for metals at cryo THL-LHC-LARP, Frascati, Nov. 14-16, 2012N. Mokhov: Magnet Energy Deposition Upgrade23

Summary and Plans

- FLUKA and MARS synchronized models are up, running and used for optimization studies of HL-LHC triplets.
- Overall very good agreement between FLUKA and MARS on power density and dynamic heat load in quads.
- MARS15 developments in 2012 add confidence.
- Peak power density in 140-mm ID quads with 3.7-mm SS BP is at the quench limit. Peak dose is 7.5 times above the target of 40 MGy.
- First results for the 150-mm ID triplet with beamscreen and midplane W-inserts (7.5-mm max thickness): peak power density and dose in Q1 are reduced by a factor of 5. Another factor of 2 can be achieved by increasing W thickness to 9 mm.
- Repeat with consistent IT optics (including 160-mm ID D1), inserts in MCBX and adjusted TAS ID.
- Further R&D on DPA limits at cryo temperatures (Fermilab-Japan collaboration).
 HL-LHC-LARP, Frascati, Nov. 14-16, 2012
 N. Mokhov: Magnet Energy Deposition Upgrade
 24