Preliminary Studies of Quench Protection for MQXE & MQXF

Massimo Sorbi and Giulio Manfreda

Milan University & INFN LASA

Udine University

2nd joint HiLumi meeting, 15 Nov. 2012 M. Sorbi

Introduction:

The study was aimed to calculate the hot spot temperature in case of quench for the:

- MQXE-HQ (aperture diameter 120 mm)
- MQXF-old design (aperture diameter 140 mm)
- MQXF-new design (aperture diameter 150 mm)

The calculations have been performed with **QLASA** (analytical code, with analytical evaluation for quench velocity) and with **ROXIE** (FE calculation of heat diffusion)

In both the codes the material properties of **MATPRO** (*material library of LASA*) *have been used.*

The agreement of the results for both the codes is very good.

Magnets main parameters

	MQXE (HQ)	MQXF-140 mm	MQXF-150 mm
Coil aperture diameter	120	140	150
Magnet max-length (m)	7.19	7.70	8.50
Operating current (A)	14720	15440	17300
Stored energy (MJ)	6.3	9.9	12.3
Peak voltage (V)	1000	1000	1000
Dumping resistance $(m\Omega)$	68	65	58
Inductance/length (mH/m)	8.13	10.8	9.6
Strand number	35	40	40
Bare cond. cross section (mm ²)	21.8	24.9	29.2
Copper/non-copper ratio	1.17	1.13	1.13
MIITs (T=2K-300K @ B=10 T)	20	25	32
Magnet energy/cond.volume (MJ/m ³)	108	91	102

2nd joint HiLumi meeting, 15 Nov. 2012 M. Sorbi

The hot spot temperature calculation has been performed assuming:

- 1. The magnet is considered as standing alone, i.e. not in serie with other magnet.
- 2. At time=0 a quench start in the high field conductor region.
- 3. The QDS detects the quench as soon as the resistive voltage reaches the threshold voltage Vqds (Vqds = $100 \div 300 \text{ mV}$).
- 4. The protection system activates the heaters and the aperture of the power supply switch. Both these two operations becomes effective with a same delay time ($t_d = 10 \div 40$ ms).
- 5. The heaters cover all the magnet length and <u>both</u> the layers.
- 6. In the conductor enthalpy, also the contribution of insulation is considered (the insulated conductor MIITs are sensible larger than bare conductor MIITs)
- 7. A parametric study has been performed, varying the Vqds and t_d .

Hot spot temperature calculation

MQXE-HQ (120 mm)

MQXF-old (140 mm)

Hot spot temperature calculation

MQXF-new (150 mm)

Conclusion

- The agreement between ROXIE and QLASA regarding the hot spot temperature prediction is reasonably good.
- The MQXF-old design (140 mm) and MQXF-new design (150 mm) presents about the same behavior of the hot spot temperature vs. the delay time & Vqds threshold voltage.
- The MQXE-HQ magnet presents a slight larger value of hot spot temperature: this is main due to the double effect of lower value of MIITs and larger value of magnetic-energy/conductor-volume
- The hot spot temperature of MQXF-new design (150 mm) can be considered save (T < 300 K) with a delay of 20-25 ms for the effectiveness of quench heater and with Vqds of 100-200 mV: both these values are feasible if compared to the experience.
- If the magnets are connected in serie with the same power supply, the calculation has to be re-execute, and by-pass diodes per each magnet are necessary.