

With input from many colleagues from WP2 and CERN groups

Based on discussions at the LHC Chamonix workshop in 2011 and the LIU – HL-LHC 'Brainstorming' meetings

Performance optimization for the LHC

Luminosity (round beams):

$$L = \frac{n_b \cdot N_1 \cdot N_2 \cdot f_{rev}}{4\pi \cdot \beta^* \cdot \varepsilon_n} \cdot R(\phi, \beta^*, \varepsilon_n, \sigma_s)$$

Event pileup & e-cloud

→ 1) maximize bunch brightness (beam-beam limit) → [N_b/♣
 → 2) minimize beam size (constant beam power; aperture)
 → 3) maximize number of bunches (beam power; e-cloud)
 → 4) compensate for 'R'

- Operation at performance limit
- \rightarrow choose parameters that allow higher than design performance
- \rightarrow leveling mechanisms for controlling performance during run

Potential Performance Limitations for the LHC Bunch Intensity:

1) Beam-Beam interaction → limit for beam brightness and Θ?
→ no limit found yet for head-on → ΔQ = 0.02 - 0.03

3) Collective effects (e.g. TMCI) → ca. 3.5 10¹¹ ppb (single bunch) [Elias Metral]

→ heating of equipment (e.g. MKI) → HL-TC

4) e-cloud effect \rightarrow depends on bunch spacing and SEY

→ 50ns operation requires SEY < 2.1!

 \rightarrow 25ns requires SEY < 1.3 for 2 10¹¹ ppb

→ e-cloud with 50ns bunch spacing has larger bunch limit than single bunch TMCI limit for all SEY values!

High Luminosity LHC

LHC Challenges: e-cloud

F. Zimmermann, Chamonix 2011

25-ns bunch spacing

50-ns bunch spacing

-e-cloud heat load limit for 50ns larger than TMCI limit

-e-cloud heat load limit for 25ns compatible with bb limit if

 $\delta_{\rm max}$ < 1.3

or with special bunch patterns that minimize e-cloud (e.g. micro batches or satellite bunches)

-HL-LHC limit of the arc cryo system (upgrade) -> PLC

2nd HL-LHC General Meeting 13-14 November 2012

should be able to find better solution for HL-LHC

5

Potential Performance Limitations for the LHC

emittance:

 MADX simulation for IBS with beam parameters from Fill 2028: (Bjorken-Mtingwa algorythm assumes Gaussian distributions)

→MADX-IBS growth rate ≈ 3 hours @ injection ($V_{RF} = 6 \text{ MV}; \tau_s = 1.15 \text{ ns}, \varepsilon_s = 0.38 \text{ -} 0.53 \text{ eVs} \Rightarrow \sigma_{\delta E/E} \approx 0.3 \text{ 10}^{-3}$)

→ request for HL-LHC paramters IBS growth rate \approx 9 hours

→ $\varepsilon_{n,inj}(25ns) \ge 2.0 \ \mu m; \ \varepsilon_{n,inj}(50ns) \ge 2.5 \ \mu m$

2) Allow for 20% emittance growth during injection and ramp:

→
$$\varepsilon_{n,col}(25ns) \ge 2.5 \ \mu m; \ \varepsilon_{n,col}(50ns) \ge 3.0 \ \mu m$$

LHC Challenges: Beam-Beam Interaction

Design report: $\Delta Q_{\text{beam-beam}} < 0.01$

- → 3 head-on/bunch → $\xi_{\text{beam-beam}} < 3.3 \ 10^{-3}$ → N < 1.2 10^{11}
 - 2 head-on/bunch $\rightarrow \xi_{\text{beam-beam}} < 5 \ 10^{-3} \rightarrow N < 1.7 \ 10^{11}$

@ nominal emittance: $\varepsilon_n = 3.75 \ \mu m \ rad$

- Operation experience: $\Delta Q_{\text{beam-beam}} < 0.02 0.03$
- 2 head-on/bunch $\rightarrow \xi_{\text{beam-beam}} < 13 \ 10^{-3} \rightarrow N < 3.7 \ 10^{11}$ @ $\varepsilon_n = 3.0 \ \mu\text{m rad}$
 - → N < 3.1 10¹¹ @ $\epsilon_n = 2.5 \ \mu m \ rad$

Potential Performance Limitations for the LHC

beta*:

1) Aperture \rightarrow interaction with WP3 of the HL-LHC: $\beta^* = 0.15$ m

2) Chromatic aberrations & optics matchability

→ OK for $\beta^* \ge 0.3m$ (Phase 1 solution)

→ ATS squeezing mechanism for $\beta^* < 0.3m$

3) Geometric reduction factor:

 \rightarrow moderate increase of L with reduced β^*

→ margin for L leveling (Crab Cavities? or dynamic β^*)

Luminosity

HL-LHC General Meeting 13-14 November 2012

Oliver Brüning BE-ABP CERN

2nd HL-LHC General Meeting 13-14 November 2012

12

2nd HL-LHC General Meeting 13-14 November 2012

Oliver Brüning BE-ABP CERN 13

HL-LHC Performance Goals

Leveled peak luminosity: $L = 5 \ 10^{34} \ cm^{-2} \ sec^{-1}$

Virtual peak luminosity: $L > 10 \ 10^{34} \ cm^{-2} \ sec^{-1}$

Integrated luminosity: 2

250 fb⁻¹ per year

Total integrated luminosity: ca. 3000 fb⁻¹

HL-LHC Performance Estimates

'Stretched' Baseline Parameters following 2nd HL-LHC-LIU:

Parameter	nominal	25ns 5	50ns	6.2 10^{14} and 4.9 10^{14}		
Ν	1.15E+11	2.2E+11	3.5E+11	p/beam		
n _b	2808	2808	1404	→ sufficient room for leveling		
beam current [A]	0.58	1.12	0.89	(with Crab Cavities)		
x-ing angle [μ rad]	300	590	590			
beam separation $[\sigma]$	9.9	12.5	11.4	Virtual luminosity (25ns) of		
β* [m]	0.55	0.15	0.15	$L = 7.4 / 0.305 \ 10^{34} \ \text{cm}^{-2} \ \text{s}^{-1}$		
ε _n [μ m]	3.75	2.5	3.0			
ε _L [eVs]	2.51	2.51	2.51	= 24 10 ³⁴ cm ⁻² s ⁻¹ ('k' = 5)		
energy spread	1.20E-04	1.20E-04	1.20E-04			
bunch length [m]	7.50E-02	7.50E-02	7.50E-02	Virtual luminosity (50ns) of $1 - 9 = (0.221 \pm 0.34 \text{ sm}^2 \pm 1.34 \text{ sm}^2 $		
IBS horizontal [h]	80 -> 106	18.5	17.2	$L = 8.5 / 0.331 10^{54} \text{ cm}^{-2} \text{ s}^{-1}$		
IBS longitudinal [h]	61 -> 60	20.4	16.1	= 26 10 ³⁴ cm ⁻² s ⁻¹ ('k' = 10)		
Piwinski parameter	0.68	3.12	2.85			
geom. reduction*	0.83	0.305	0.331	*) without Hourglas effect		
beam-beam / IP	3.10E-03	3.3E-03	4.7E-03			
Peak Luminosity	1 10 ³⁴	7.4 10 ³⁴	8.5 10 ³⁴	(Leveled to 5 10 ³⁴ cm ⁻² s ⁻¹		
Virtual Luminosity	1.2 10 ³⁴	24 10 ³⁴	26 10 ³⁴	and 2.5 10 ³⁴ cm ⁻² s ⁻¹)		
Events ynorossing (peak & leveled L)		19 -> 28 207	476	140 140		
nd HL-LHC General Meeting 13-14 November 2012 Oliver Brüning BE-ABP CFRN 15						

2nd HL-LHC General Meeting 13-14 November 2012

<u>Upgrade Considerations: Beam Lifetime</u>

Run length assuming leveled luminosity: $L \mapsto \frac{N_{tot}^2}{n}$

→ virtual luminosity of $k * L_{level}$ → $T_{level} = (1 - 1/\sqrt{k}) * \tau_{eff}$

→ $\tau_{eff} = 17.2$ hours for 6.2 10¹⁴ p/beam and $L_{level} = 5 \ 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$:

k = 1.5
$$\rightarrow$$
 T_{level} = 3.1 h

►
$$\tau_{eff} = 27.2$$
 hours for
4.9 10¹⁴ p/beam and
 $L_{level} = 2.5 \ 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$:

k = 3.5
$$\rightarrow$$
 T_{level} = 12.7 h

 $\# k = 5.0 \rightarrow T_{level} = 9.3 h$ $\# k = 10.0 \rightarrow T_{level} = 18.8 h$

2nd HL-LHC General Meeting 13-14 November 2012

 Upgrade Considerations: Integrated Luminosity

 Integrated luminosity: leveling to constant luminosity

 $L_{int} = L_{level} * T_{level}$
 $L_{int} = (1 - \sqrt{L_{level}/L_{virt}}) \times \frac{N_{tot}}{n_{IP}S}$ (σ=100 mbarn)

 → integrated luminosity directly proportional to total current

→
$$k = 1.5$$
; $L_{int} = 0.57$ fb⁻¹ per fill for 25ns over 3.1h

- → k = 3.5; $L_{int} = 1.07$ fb⁻¹ per fill for 50ns over 12.7h
- → k = 5.0; $L_{int} = 1.71$ fb⁻¹ per fill for 25ns over 9.3h
- → k = 10; $L_{int} = 1.57$ fb⁻¹ per fill for 50ns over 18.8h

Luminosity

Upgrade Considerations: Integrated Luminosity

Phase	Days		Comment			
Commissioning	21					
Scrubbing run	10					
5 MDs	22		4.5 days per slot			
6 Technical stops	30		5 days (4 days TS plus 1 day recovery with beam)			
Special requests	10		TOTEM/ALPHA Intermediate energy run Luminosity scans			
Intensity ramp up	~39	Cond	hana fan aa 150 dawa /			
Total high intensity	~130	can	for HL-LHC operation			
lon setup	4			-		
lon physics	24	→ im	nplies 1.7 fb ⁻¹ /day			
TOTAL	290	→ co	a. 1 to 3 fills per day			
High Luminosity LHC schedule 2011 v2.0	18		M. Lamont March 2011 16-3-20	11		
L-LHC General Meeting 13-14 N	Jovember 2012	-	Oliver Brüning BE-ABP CERN			

2nd

HL-LHC Performance Estimates: Variation

25ns case:

- L_{peak} (without CRAB cavities) = 7.4 10³⁴ cm⁻² sec⁻¹
- $L_{virtual}$ (with CRAB cavities) = 24 10³⁴ cm⁻² sec⁻¹
- T_{fill} (without CRAB cavities) = 3.1h
- T_{fill} (with CRAB and perfect compensation) = 9.3 h
- 490 Fills per year without CRAB; 160 with CRAB

Efficiency = 39%

High Luminosity

Potential limitations: General worries

How confident are we that average fill times are longer than 7h?

- \rightarrow RF trips
- → QPS and PC trips
- \rightarrow beam abort due to R2E \rightarrow losses for operation with > 1A?
- → UFO rate

 \rightarrow cleaning?

→ aging after 15+ years of operation?

→ Very few operator initiated EOFs in 2010 and 2011 operation!!!!!!

How confident are we that we can overcome e-cloud for 25ns?

 \rightarrow HL-LHC goals require above ultimate intensities with sub-nominal ε_n

- \rightarrow requires SEY of less than 1.3!
- \rightarrow keep 50ns option alive!
- \rightarrow apart from pile-up, 50ns has a high performance potential!

Other Topics for discussion in the afternoon

Bunch Intensity:

1) Limitations other than the LHC cryo system (e-cloud instability, Z heating; impact of bunch length etc.)

2) Maximum cryogenics cooling power in the arcs for HL-LHC with cryo upgrade.

- 3) Attainable average Turnaround time for the LHC.
- 4) Estimate for the attainable average fill length in the HL-LHC (ca.
- 5 hours in 2011 operation!).
- 5) Dynamic beta squeeze during physics?
- 6) Maximum tolerable Chromatic aberrations.

cern.ch

Geometric Reduction Factor: R

geometric luminosity reduction factor:

large crossing angle:

 \rightarrow reduction of long range beam-beam interactions

Ũ

0.1

0.9

0.8

0.7 0.6 0.5 0.4 0.3 0.2 R(B

- \rightarrow reduction of head-on beam-beam parameter
- \rightarrow reduction of the mechanical aperture
- → reduction of instantaneous luminosity
 - → inefficient use of beam current

0.2

0.4

0.6

(machine protection!)

effective cross section

0.8

 eta^{*}

[Alick Macpherson]

LHC Availability and Performance in 2011

2011 Proton Run: Luminosity Production		Days	NB %	SET UP %	INJ %	RAMP %	FT+SQ +AD %	SB %
19.3%	2011	299.3	25.7	30.5	17.4	1.7	4.3	20.5
	2011-TS	277.9	23.3	29.5	18.7	1.9	4.7	22.0
	р-р	156.6	22.0	20.4	19.2	2.2	3.8	33.8
18.9%	p-p LF	81.4	23.6	19.3	18.9	2.0	3.5	32.6
2.0%	Pb-Pb	24.1	25.0	20.8	13.6	2.2	5.5	32.9
32.6%	MD	33.2	22.9	32.3	36.8	1.2	6.0	0.8
NB Ramp	High ß	4.2	6.2	43.7	10.3	3.2	35.4	1.1
Inj SB p	p-p, Pb-Pb runs do not include TS or MD time							

Hubner factor: $H = 11.57 \text{ x } L_{Del} / (D \text{ x } L_{Peak})$ H_Expected = 0.2 p-p (LP): 81.4 days $L_{Peak} = 2572 (\mu b.s)^{-1} L_{Del} = 4.01 \text{ fb}^{-1} => H = 0.22$ Pb-Pb: 24.1 days $L_{Peak} = 512 (b.s)^{-1} L_{Del} = 167.6 \mu b^{-1} => H = 0.24$

2nd LIU-HL-LHC Brainstorming meeting 30 March 2012

STABLE BEAMS – often short !

→ Using LHC data from 2011 one obtains:
-average run length = 4.6 hours
-most probable turnaround time = 5.23 hours
→ average Fill-to-Fill time = 9.8 hours
-total number of physics fills = 99
-total number of physics days = 80 (luminosity production period)
→ LHC efficiency in 2011 = 99*9.8/80/24 = 50%

(compared to 38% to 78% for the HL-LHC scenarios!)

→ One should demonstrate in LHC operation that average fill length can be larger than desired fill length for HL-LHC (> 7 hours) and that average Turnaround time can be ≤ 5 hours

→ obtained integrated luminosity per week over last month: ca. 163 pb⁻¹
 → LHC Efficiency: ca. 163 / 405 → 40%

[Alick Macmpherson; Evian 2012]

LHC 2011 Run: Efficiency

