High Luminosity LHC

Massimo Giovannozzi – CERN On behalf of WP2- Task 2.3 collaborators

R. Appleby, J. Barranco, A. Bogomyagkov, Y. Cai, A. Chance, B. Dalena, R. De Maria, S. Fartoukh, A. Faus-Golfe, K. Hock, Y. Jiao^{*}, M. Korostelev, E. Levichev, Y. Nosochkov, J. Payet, P. Piminov, J. Resta Lopez, L. Rivkin, R. Tomás, M-H. Wang, A. Wolski, Y. Yan^{*}, M. Zobov

* Moved to other tasks

Collaborating Institutes: BINP, CEA, CERN, CSIC-IFIC, EPFL, INFN-Frascati, SLAC, Uni-Liv, Uni-Man

The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

- Introduction
- Field quality of new magnets
- Non-linear fringe fields
- Field quality of crab cavity
- Numerical simulation tools
- Next steps
- Summary and outlook

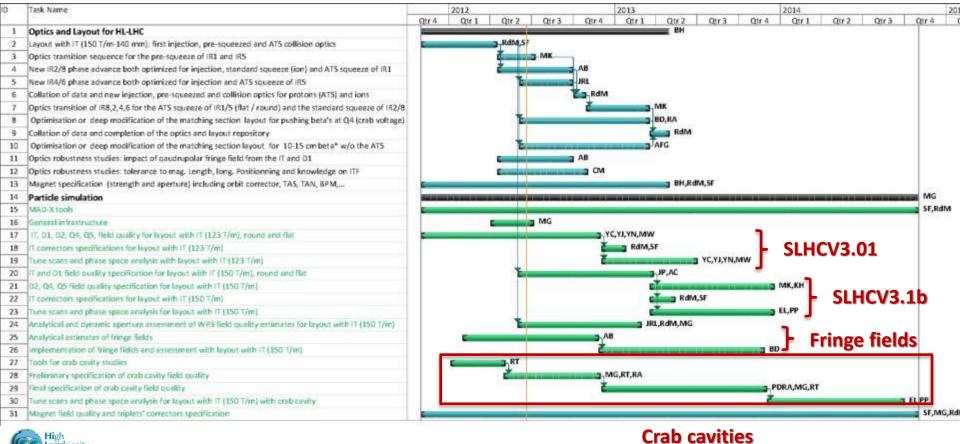
- Introduction
- Field quality of new magnets
- Non-linear fringe fields
- Field quality of crab cavity
- Numerical simulation tools
- Next steps
- Summary and outlook

Introduction - I

- Goals of Task 2.3 of WP2:
 - To study the field quality tolerances for new magnetic elements for the LHC upgrade.
 - To specify the circuits for the non-linear correction of the triplets field quality.
 - To study also more subtle items:
 - Impact of field quality of crab cavities
 - Impact of non-linear fringe fields of new large aperture magnets.
 - At the end of the specification process, the detailed analysis of the phase space should be performed to detect possible pathologies.

Introduction - II

- At the beginning of the activities no final layout available, but two intermediate configurations
 - SLHCV3.01: layout with triplets at 123 T/m
 - SLHCV3.1b: layout with triplets at 150 T/m
- Task organisation
 - Apparent dilemma: work by layout or by magnet families?
 - Mixed solution:
 - Work on SLHCV3.01 under the responsibility of one team (SLAC).
 - Work SLHCV3.1b divided over several teams each one responsible for certain magnet classes (CEA, Uni-Liv, BINP).


Introduction - III

- Other tasks:
 - Non-linear fringe fields: analytical estimates and long-term impact on beam dynamics (BINP and CEA teams).
 - Crab cavities: long-term impact on beam dynamics and specification of field quality (CERN, Uni-Man, BINP teams).
 - Analysis of field quality estimates provided by WP3 (CSIC-IFIC).

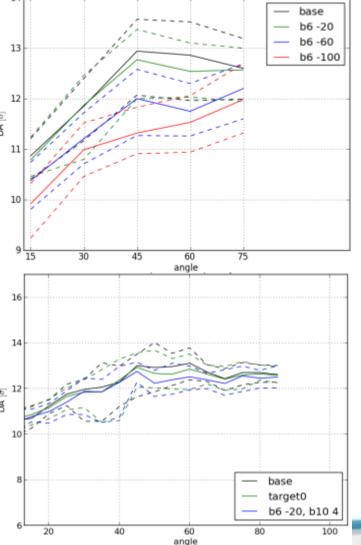
Introduction - IV

• Disclaimer: next to impossible to represent actual resources (in FTE or ppm) to a Gantt chart. Time line is indicative and not to be used to evaluate allocated resources.

- Introduction
- Field quality of new magnets
- Non-linear fringe fields
- Field quality of crab cavity
- Numerical simulation tools
- Next steps
- Summary and outlook

Field quality of new magnets - I

- Two situations to consider:
 - Injection energy: persistent current effects
 - Collision energy: geometric effects
- Figure-of-merit: long term dynamic aperture
 - 11 angles
 - 30 amplitudes in 2 σ range
 - 60 seeds
 - ∆p/p set to 2/3 of bucket height
 - 10⁵ turn



- Baseline configuration: machine as-built
- Strategy:
 - Add one new class of magnets at a time
 - Scan multipoles around an initial field quality estimate.
 Such an estimate can be based on:
 - Measured data for existing similar magnet classes
 - Expected field quality for proposed magnets

Target DA: \approx 11-12 σ at injection and collision (to leave margin for even lower β^*)

Field quality of new magnets- II

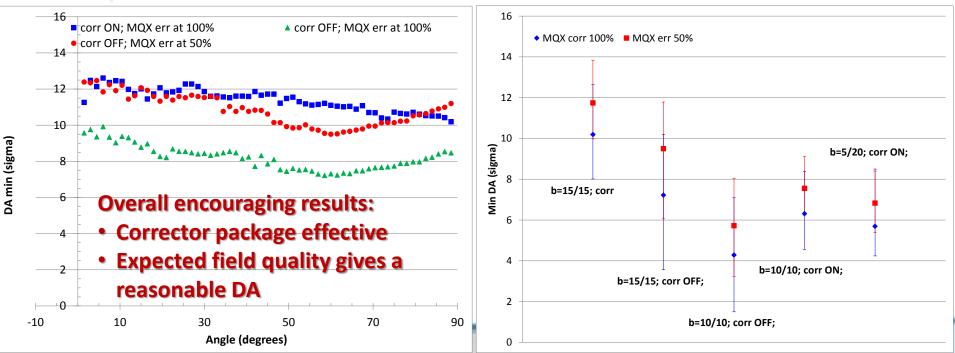
Scan of systematic b6, b10. Random set to 20% of systematic. Selected:

- b6(syst)=-20 units
- b10(syst)=4 units

Injection studies: triplets and other magnets. Estimated field quality: • D1: DX magnet

- D2: existing D2
- Q4, Q5: existing MQY

angle


Field quality of new magnets - III

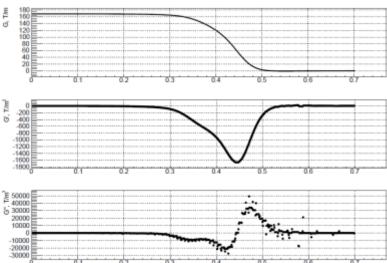
- Collision studies: new triplets
 - Detailed scan of multipoles starting from estimate of field quality based on measured existing triplets performed with SLHCV3.01.
 Presented at IPAC12, Y. Nosochkov et al.
 - As from June 2012 an estimate of the field quality of new triplets has been made available by WP3.
 - Two activities launched in parallel:
 - Analysis of SLHCV3.01 performing multipoles scans starting from expected field quality (see talk by Y. Nosochkov: Optimization of triplet field quality in collision)
 - Pre-analysis of SLHCV3.1b with expected field quality.

Field quality of new magnets - IV

- Preliminary study for SLHCV3.1b in collision:
 - No multipole scans
 - Two error tables for triplets used:
 - Original error table from WP3
 - Error table from WP3 with multipoles reduced by a factor of 2.
 - Impact of non-linear correctors'package tested.
 - Impact of beta* tested.

- Introduction
- Field quality of new magnets
- Non-linear fringe fields
- Field quality of crab cavity
- Numerical simulation tools
- Next steps
- Summary and outlook

Non-linear fringe fields - I


- The proposed HL-LHC layout relies on larger-thannominal aperture magnets.
- Estimate of fringe fields effects is mandatory (the linear part is evaluated by Task 2.2, then non-linear part by Task 2.3).
- The starting point is analytical estimate of the impact on detuning with amplitude and chromaticity.
- If the effect is not negligible, then long-term tracking should be performed (but this require changes to the tracking code SixTrack).
- Triplets and separation dipoles have been considered.

Non-linear fringe fields - II

- Approach:
 - Estimate field, derive Hamiltonian, average over the phases, then derive by action (detuning with amplitudes).
 - Similar, but including chromatic effects (chromati No special difference between quadrupoles or dipoles.
 - As usual, optics, or orbit, are assumed to be unperturbed.
 - The shape of the fringe fields has been taken from measurements of HQ magnet (from WP3). Courtesy A. Bogomyagkov

Name	α_{XX}	$\alpha_{xy} = \alpha_{yx}$	α_{yy}	The offect is not	Name	ξxx	$\xi_{xy} = \xi_{yx}$	ξ _{yy}
MQXC.3L5	$3.7 \cdot 10^{3}$	$8.8 \cdot 10^{3}$	$6.7\cdot10^3$		MQXC.3L5	$-3.6 \cdot 10^{3}$	$-8.7 \cdot 10^{3}$	$-6.5 \cdot 10^{3}$
MQXC.B2L5	6.3 · 10 ³	$-10 \cdot 10^{3}$	3.1 · 10 ³	dramatic, but	MQXC.B2L5	$-6.2 \cdot 10^{3}$	10 · 10 ³	$-2.8 \cdot 10^{3}$
MQXC.A2L5	$4.1 \cdot 10^{3}$	7 · 10 ²	5.6 · 10 ²	not completely	MQXC.A2L5	$-3.7 \cdot 10^{3}$	$-7 \cdot 10^{2}$	$-5.6 \cdot 10^{2}$
MQXC.1L5	$2.9 \cdot 10^{3}$	$-1.7 \cdot 10^{3}$	4 · 10 ²	negligible too.	MQXC.1L5	$-2.5 \cdot 10^{3}$	1.7 · 10 ³	-4 · 10 ²
MQXC.1R5	4 · 10 ²	1.7 · 10 ³	2.9 · 10 ³		MQXC.1R5	-4 · 10 ²	$-1.7 \cdot 10^{3}$	$-2.5 \cdot 10^{3}$
MQXC.A2R5	5 · 10 ²	7 · 10 ²	4.1 · 10 ³	Tracking studies	MQXC.A2R5	-5 · 10 ²	-7 · 10 ²	$-3.8 \cdot 10^{3}$
MQXC.B2R5	$3.1 \cdot 10^{3}$	10 · 10 ³	6.3 · 10 ³	will be	MQXC.B2R5	$-2.8 \cdot 10^{3}$	-10 · 10 ³	$-6.2 \cdot 10^{3}$
MQXC.3R5	$6.7 \cdot 10^{3}$	$-8.6 \cdot 10^{3}$	3.7 · 10 ³	performed.	MQXC.3R5	$-6.5 \cdot 10^{3}$	8.7 · 10 ³	$-3.6 \cdot 10^{3}$
Total	$2.8 \cdot 10^4$	1.6 · 10 ³	$2.8 \cdot 10^{4}$	Perioriticat	Total	$-2.6 \cdot 10^{4}$	$-1.4 \cdot 10^{3}$	$-3.1 \cdot 10^{4}$

- Introduction
- Field quality of new magnets
- Non-linear fringe fields
- Field quality of crab cavity
- Numerical simulation tools
- Next steps
- Summary and outlook

Field quality of crab cavities - I

- Essential element for HL-LHC.
- Impact of field imperfections on long-term beam dynamics to be analysed.
- The first step is the description of the field and its imperfections
 - A development of an appropriate formalism has been recently carried out. The result is the introduction of so-called RF multipoles.
 - The new type of multipoles has been implemented in MAD-X and SixTrack.

$$\Delta p_{\perp}(x, y, z) = \frac{e}{c} \int \left[\mathbf{E}_{\perp}(x, y, s = z + ct, t) + (c \,\hat{\mathbf{s}} \wedge \mathbf{B}(x, y, s, t))_{\perp} \right] \mathrm{d}t$$

$$\Delta p_{x}(x, y, z) - i \Delta p_{y}(x, y, z) = \sum_{n=0}^{N} C_{n}(z) (x + iy)^{n}$$
Z-dependent coefficient of the RF multipole

$$C_n = B_n + i A_n \qquad \tilde{B}_n(z) = \operatorname{Re} \left[B_n e^{j(\vartheta_n - k_{\mathrm{RF}}z)} \right] = B_n \cos\left(\vartheta_n - k_{\mathrm{RF}}z\right) \\ \tilde{A}_n(z) = \operatorname{Re} \left[A_n e^{j(\varphi_n - k_{\mathrm{RF}}z)} \right] = A_n \cos\left(\varphi_n - k_{\mathrm{RF}}z\right)$$

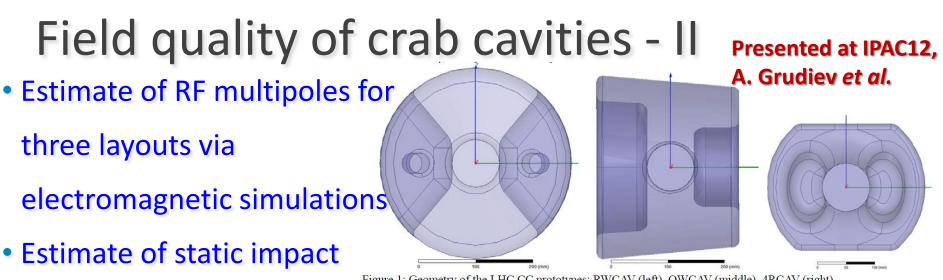


Figure 1: Geometry of the LHC CC prototypes: RWCAV (left), QWCAV (middle), 4RCAV (right).

MBRC

55

 b_2

of RF multipoles to beam dynamics.

	RWCAV	QWCAV	4RCAV
$ \Delta Q_{x,y} [10^{-3}]$	0	1.4	0
$ \Delta \xi_{x,y} [10^{-3}]$	7.96	3.13	2.24
\Delta Q [10 ⁻⁶]	0	5.06	0

 b_3 7510 3200 1260 900 82700 0 1760 0 b₄ -0.52×10^{6} -0.15×10^{6} -2.44×10⁶ 2.9×10^{6} b_5 52×10⁶ -1.66×10^{6} 0 0 b_6 560×10⁶ -14×10⁶ -650×10^{6} b_7 0

RWCAV

0

QWCAV

114

4RCAV

0

First estimate of long-term impact of

RF multipoles in progress (see presentation by J. Barranco: *RF* multipoles: modelling and impact on the beam).

- Introduction
- Field quality of new magnets
- Non-linear fringe fields
- Field quality of crab cavity
- Numerical simulation tools
- Next steps
- Summary and outlook

Numerical simulation tools - I

• Tools

- MAD-X: used to generate the lattice, optics, and files for subsequent numerical simulations (SixTrack).
 - Large set of tools for dealing with (HL-)LHC studies.
 - All optical configurations stored under afs:
 - /afs/cern.ch/eng/lhc/optics/SLHCV3.01
 - /afs/cern.ch/eng/lhc/optics/SLHCV3.1b
- SixTrack: workhorse of LHC simulation studies (single particle, weakstrong beam-beam, collimation). On-line documentation can be found at
- http://sixtrack-ng.web.cern.ch/sixtrack-ng/
- Resources are being oriented to the further development of the code.

Numerical simulation tools - II

• Tools

- Development of SixTrack:
 - RF multipoles (required for crab cavity studies)
 - Exact Hamiltonian
 - Special multipoles for non-linear fringe fields
 - Implement physics of ions
 - Integration of FLUKA for collimation studies
 - Re-factoring of tracking engine
 - Possibility of adapting the code for GPUs
 - Possibility of re-using the SixTrack tracking engine for other codes (e.g., instabilities)
 - Implement time-dependence of magnets' strength.

Quadrupole, sextupole, octupole components (normal and skew) already implemented.

20/06/2012

Numerical simulation tools - III

Tracking resources:

- CERN batch system (LSF)
- Volunteers' based tracking system LHC@home (based on Boinc architecture). Web site at

http://lhcathome.web.cern.ch/LHCathome/

erver software version: 25137M / 11 Nov 2012 | 15:59:19 UTC

Server status

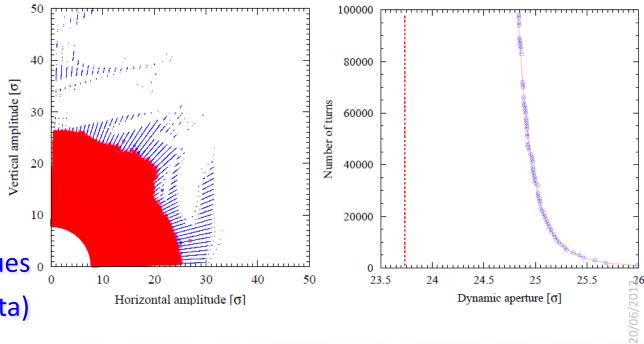
Program	Host	Status	
data-driven web pages	boinc05	Running	
upload/download server	boinc05	Running	
scheduler	boinc05	Running	
feeder	boinc05	Running	
transitioner	boinc05	Running	
file_deleter	boinc05	Running	
sixtrack_assimilator	boinc05	Running	
sixtrack_validator	boinc05	Running	
db_purge	boinc05	Running	
Running:	Program is operati	ing normally	
Not Running:	Program failed or the project is down		
Disabled:	Program is disabled		

Computing status

Work	
Tasks ready to send	108,070
Tasks in progress	93,736
Workunits waiting for validation	8
Workunits waiting for assimilation	2
Workunits waiting for file deletion	0
Tasks waiting for file deletion	0
Transitioner backlog (hours)	0

Users		
with recent credit	15,505	
with credit	107,216	
registered in past 24 hours	28	
Computers	#	
with recent credit	25,779	
with credit	277,762	
registered in past 24 hours	137	
current GigaFLOPs	34,917	

log in


Tasks by application					
application unsent in progress av			avg runtime of last 100 results in h (min-max)	users in last 24h	
SixTrack	107,820	92,741	4.78 (0.05 - 12.29)	6,271	

Numerical simulation tools - IV

- Well-tested chain of tools:
- Tracking code
- Tracking environment. Documentation at
 - http://sixtrack-ng.web.cern.ch/sixtrack-ng/doc/sixdesk/sixdesk_env.html
 - Required to launch massive numerical simulations in an automatic way, i.e., starting from a single mask file generate all the jobs corresponding to the scan over:
 - Angles
 - Amplitudes
 - Seed

uminosity

Post processing tools (on-going studies to improve current tools 10 and find new techniques o to exploit available data)

- Introduction
- Field quality of new magnets
- Non-linear fringe fields
- Field quality of crab cavity
- Numerical simulation tools
- Next steps
- Summary and outlook

Next steps

- Consider the field quality (collision and injection) of the other magnet classes, i.e., separation dipoles (D1, D2) and insertion quadrupoles (Q4, Q5).
- Finalise the studies of crab cavities producing a target error table.
- Implement and study the long-term impact of non-linear fringe fields.
- Analysis of the details of the phase space topology
 when all the pieces are put together.

Summary and outlook

- After one year of HiLumi activities
 - Detailed studies of triplet field quality in advanced status for SLHCV3.01
 - First exploratory studies of impact of expected triplet field quality performed for SLHCV3.1b
 - First studies of long-term impact of crab cavities field quality performed
 - Analytical studies of the impact of non-linear fringe fields carried out

Excellent progress for Task 2.3!

- This a very solid ground to build on the next steps (analysis of other magnet classes is the next task)!
- The release of the HLLHCV1.0 layout will require to cross-check some of the results obtained so far, but the strategy adopted should avoid bad surprises.

Once more...thanks a lot to all collaborators and collaborating institutes!

R. Appleby, J. Barranco, A. Bogomyagkov, Y. Cai, A. Chance, B. Dalena, R. De Maria, S. Fartoukh, A. Faus-Golfe, K. Hock, Y. Jiao, M. Korostelev, E. Levichev, Y. Nosochkov, J. Payet, P. Piminov, J. Resta Lopez, L. Rivkin, R. Tomás, M-H. Wang, A. Wolski, Y. Yan, M. Zobov

Collaborating Institutes: BINP, CEA, CERN, CSIC-IFIC, EPFL, INFN-Frascati, SLAC, Uni-Liv, Uni-Man

Thank you for your attention

cern.ch