Coherent effects in the presence of beam-beam and impedance

S. White

Thanks to X. Buffat, N. Mounet, T. Pieloni and A. Valishev

Outline

Models

Beam-beam and impedance

head-on, long-range, offset collisions

Stabilization techniques

chromaticity, damper, octupoles, head-on tune shift

Correlation with LHC observations and outlook for HL-LHC

Models

- Two models were developed to study the combined effects of beambeam and impedance:
 - → **Analytical model:** based on the work by Perevedentsev et al., eigenvalue problem, allows to see all the modes but Landau damping not included
 - → **Macro-particles tracking:** based on BeamBeam3D by J. Qiang, slow but fully self-consistent field computation, includes Landau damping
- Complementary tools to understand how these effects couple
- The impedance model for HL-LHC is not available yet all the following simulations were performed with the current model

6D beam-beam

- → The modes are computed with analytical model: with BB only system always stable
- \rightarrow For large ratio β^*/σ_s no synchro-betatron coupling introduced by beam-beam: side-bands deflected by $<Q_{inc}>\sim\xi/2$ + coherent modes at Q and Q- ξ (linear BB kick: Y=1)
- \rightarrow Small ratio $\beta^*/\sigma_s^{}$ the beam-beam can deflect the side bands more complex picture

Impedance

- → As the bunch intensity is increased the mode 0 is shifted down until it couples with mode -1 leading to the so-called TMCI (transverse mode coupling instability)
- \rightarrow For Q' non-equal to 0.0 the system is always unstable, the rise-time and unstable modes depend on the value of Q'

Impedance and beam-beam

- → Scan the head-on beam-beam parameters at Q'=0.0 and constant wake
- \rightarrow The beam-beam interaction shifts the π -mode down faster: coupling between modes 0 and -1 could occur at lower intensity
- \rightarrow Although the analytical model predicts also coupling between σ -mode and mode +1 it is not observed in tracking simulations

Offset collisions

- \rightarrow Single head-on with offset: coupling between the π -mode and mode -1 occurs at a separation between 1 and 2 σ in this case (depends on ξ)
- \rightarrow **Long-range interactions:** here assumed a separation of 10 σ with all the long-range interactions lumped at a single IP. Strong instability observed around the equivalent of 10 long-range interactions for these parameters (depends on ξ , phase advances, tunes separation)

Stabilizing the HO interactions

- \rightarrow High chromaticity helps stabilizing although much less efficient at higher β^*
- → Transverse damper very efficient, should be able to cure these instabilities
- → Comments: octupoles have no impact on stability in this case

Stabilizing the LR interactions

- → Octupoles have a stabilizing effect. For 2x impedance not possible to fully stabilize even at full current
- → High damper gain and chromaticity should cure instabilities
- → Non-Gaussian tails appear to degrade the situation. Reason not yet understood: requires more detailed study

Why are LR so much worse?

Some observations to be confirmed and studied in details, shown here for discussion:

- → Beam-beam force can excite quadrupolar modes and cross talk with dipolar modes through the separation
- → When an instability is rising, a clear line is observed at 2Q both in measurements and simulations
- → Damper is blind to quadrupolar modes

Head-on + long-range

- → Track 2x2 bunches such that each bunch has 10 long-range (lumped) + 1 head-on. Each bunch couples with a different counter rotating bunch for the long-range and the head-on
- → Octupoles, damper gain and chromaticity set to 0, both planes look stable over 400000 turns
- → Full head-on has a clear stabilizing effect even without octupoles or damper

How this relates to LHC observations?

- Instabilities observed routinely in 2012 during the squeeze, when beams are brought into collision and sometimes stable beams: during all these processes beam-beam has important impact on beam dynamics
 - At low chromaticity (beginning of the year): strong instabilities leading to beam abort → consistent with simulations
 - At high chromaticity: instabilities mostly observed at the end of the squeeze, current settings are Q'~15 and G=0.02 → could not be reproduced in simulations so far
 - Regardless of the parameters head-on collisions with large enough ξ have clear stabilizing effect \rightarrow consistent with simulations
- All these simulations were done for single bunch → ongoing effort to implement impedance model in the COMBI multi-bunch tracking code (done in collaboration with X. Buffat and LHC beam-beam team)
- Recent results indicate that beam profile or quadrupolar modes could have an impact → needs to be confirmed and studied in more details

Outlook for HL-LHC

- HL-LHC will run with significantly higher bunch number and intensity → depending on collimator settings and layout stability could be degraded
- Increased energy will reduce octupoles efficiency → operation now heavily relies on these to stabilize the beams – scaling?
- Some leveling scenarios (crossing angle, separation) imply a significant reduction of the head-on tune shift → consequences for stability?:
 - \rightarrow Considering stability only, β^* leveling looks like the most robust operating scenario
 - \rightarrow This could also result in running at very large $\xi \rightarrow$ lifetime? should we consider half integer tune?
 - → Studies including beam-beam and impedance are necessary to assess the implication of each leveling scenario on beam stability
 - → Excellent progress done this year. Still to be done: multi-bunch, crossing angle, new HL-LHC impedance model...

Thank you for your attention!

SPARES

Quadrupolar oscillations

→ Although observed as well in the case of impedance only (most likely only statistical fluctuations) or impedance and head-on instabilities there is no evidence of cross talk with dipolar modes

More complex collision pattern

	IP1	IP2	IP3	N _{LR} tot.
B1/1	1	1	0	14
B1/2	0	0	1	7
B1/1	1	1	1	21

At all IPs equivalent of 7 LR with 10σ separation in H plane

- → Same rise-time for all bunches but different amplitudes
- → Could be even more significant for real LHC collision pattern