

Crab Cavities Collaboration Report

Why crabs?

- Luminosity leveling represents a substantial upgrade of integrated luminosity
 - Increasing effectiveness with larger crossing angles
 - Only known way to improve luminosity during the store
- Significant R&D on cavity technology for several years
 - Encouraging results are making this possible
 - Three designs under study in Europe and the US

Note: The WP4 session this afternoon will cover many more details on cavity design, and expand to cover beam dynamics and machine protection

Luminosity Levelling

nominal

4

6

2

- Lumi decreases for proton burning (neglecting effects like emittance growth due to b-b, IBS, etc...) $L [10^{34} \text{ cm}^{-2}\text{s}^{-1}]$ no leveling
- Total number of collisions *JLdt* in a run is limited by number of¹⁰ stored protons
- ⇒ store a lot of protons but keep instantaneous lumi «low» by detuning one (or more) parameter.
- ⇒keep the lumi constant by re-tuning the paramter(s) to compensate proton loss (and possibly any other effect).

no leveling w peak 2x10³⁵ cm⁻²s⁻¹

8

leveling at 5x10³⁴ cm⁻²s⁻¹

10

12

14

t [h]

System Requirements

- Voltage = 10 MV (~ 3MV/cavity)
 - SPS test 2 cavities/module
 - LHC 3 cavities/module
- Frequency = 400 MHz
- Q_{ext} = 10⁶, R/Q ~300 W
- Cavity tuning/detuning ~ ± 1.5kHz (or multiples of it)
- RF power source = 60 kW (< 18 kW nominal)
- Beam current ~ 0.5-1 A

Cavity Design Overview

		Double Ridge	4-Rod	¹ ⁄ ₄ Wave	
		(ODU-SLAC)	(UK)	(BNL)	104 mm
Geometrical	Cavity Radius [mm]	147.5	143/118	142.5/122	
	Cavity length [mm]	597	500	330-405	BI DZ
	Beam Pipe [mm]	84	84	84	
	Peak E-Field [MV/m]	33	32	43	$< 50 \ \mathrm{MV/m}$
	Peak B-Field [mT]	56	60.5	61	< 80 mT
RF	$R_{_{T}}/Q$ [Ω]	287	915	345	
	Nearest Mode [MHz]	584	371-378	657	

Present Status

- 4Rod Cavity
 - Build by Niowave
 - At CERN/SM18 for vertical test
- Double Ridge RF Dipole
 - Built by Niowave + at JLAB awaiting tests

EuCARD + CERN

LARP + SBIR

- Quarter Wave
 - Due from Niowave by Dec. 2102

4 Rod - Cavity Shape

Cavity fitted LHC scenario (84 mm aperture compact transverse size) and has tolerable fields at the design gradient.

Removal of voltage variation.

Emax @3MV	32.0 MV/m
Bmax @3MV	60.5 mT
Transverse R/Q	915 Ohms

 $R_T/Q=(V(a)^2/wU)^*(c/\omega a)^2$

The Cockcroft Institute

Field Measurements

- Measurements are fairly linear but have error bars of 8%.
- Error bars are due to a low signal to noise ratio and a drift in the Q during measurements.
- The measurements are now being retaken with a higher power and checking the Q for every measurement

Input and LOM Couplers

- - Couplers have been developed for the LHC crab.
 - Input coupler interfaces with existing LHC coupler
 - LOM coupler reaches a low Q (100) and must handle 6 kW.
 - Couplers are attached to the cavity body and demountable to aid cleaning.

Tests at CERN SM18 – Ready

The cavity is currently being prepared for vertical testing mid-November at CERN in SM18.

4 Rod Plans

- Initial vertical testing starting now at CERN
 - Cavity only has basic cleaning.
- The cavity will go through additional chemistry for further testing
- Need to reduce errors in the beadpull to verify field linearity to 2% level.
- LOM and HOM coupler will be further developed, including EM design, multipactor studies, thermal management and integration into the cryostat.
- Plan to improve the strength of the outer can
- Need to decide how to tune the cavity and start work on a tuner.
- Planning a bid to STFC for SPS and LHC P4 tests inc. cavity, cryomodule, LLRF, HPRF, diagnostics, beam dynamics and experiment.

Quarter Wave Cavity

- Double quarter-wave resonator: Compact design at low frequencies; No Lower Order Modes and Same Order Modes, nearest Higher Order Mode is well separated from the fundamental mode → easier damping than in other designs; Very little parasitic acceleration (1.6 kV).
- 6 RF ports: 4 for HOM damping, 1 for FPC, and 1 for pickup.
- The cavity is developed as part of LARP and satisfies very strict space constrains near the LHC IPs.

Crabbing (fund.) mode	1 st HOM	Cavity length	Cavity width	Beam pipe diameter	Deflecting voltage
400 MHz	579 MHz	38.4 cm	14.2 cm	8.4 cm	3 MV

HOM damping

HOM frequency [GHz]	Mode Config.	R/Q [Ohm]	Qext
0.579	Longitudinal	108	1130
0.671	Horizontal	70.5	2340
0.700	Hybrid (y, z)	0.24/0.25	1140
0.752	Deflection	34.9	1750
0.800	Horizontal	6.02e-4	3160
0.917	Horizontal	30.9	2050
0.949	Longitudinal	28.1	3180
1.080	Deflection	1.54	1240
1.102	Horizontal	1.84e-3	1380
1.114	Deflection	1.06	1380
1.202	Horizontal	5.07e-2	7880
1.247	Hybrid (y, z)	8.0e-2/6.0e-2	1730
1.291	Deflection	10.0	926

Coaxial Design

High-Pass Filter

- We have successfully designed high-pass filter for 56MHz QWR at BNL. The reflection for fundamental mode is below -100dB. This first HOM is 168MHz, and the reflection has decreased to -5dB.
- ➢ With such experience, high performance highpass filter for QWCC should be straight forward.

Prototype Status

- Fabrication of a prototype cavity has started at Niowave.
- The cavity will be made of 4-mm thick Nb.
- There will be special stiffeners welded to the cavity as there is no helium vessel on the prototype.
- In the future a helium vessel will stiffen the cavity.
- VTF tests early 2013.
- Design of HOM couplers, FPC, tuner is in progress.

November 7, 2012

Quarter Wave Cavity Planning

- Parts being fabricated
 - Cavity completion due in December 2012
- HOMs and tuners under study
- Mechanical and thermal analysis
- Start design of full system for SPS test

- T3P EM Time Domain Solver in the SLAC ACE3P Suite
- Bunch Parameters
 - $-\sigma = 0.014 \text{ m}$
 - charge = 1 pC

$$\lambda(s) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(s-s_0)^2}{2\sigma^2}\right]$$

- Wakefield Parameters
 - # of points = 50,000
 - Time stamp (dt) = 0.2 ns
 - Maximum wakefield distance (S) = 3000 m
 - RMS frequency for a 1.4 cm bunch ≈ 2.5 GHz

$$f_{RMS} = \frac{c}{\sqrt{2}\pi\sigma}$$

SLAC

HOM Damping

Widely separated HOMs from the operating mode allows more options in the ٠ design of damping schemes

Waveguide Damping

Strong damping was achieved with • waveguide couplers

Coaxial Coupling

A high pass coaxial couplers to exclude the operating mode

Z. Li et.al., in Proceedings of the 3rd IPAC, New Orleans, Louisiana (2012), p. 2185

RF-Dipole Cavity Fabrication

Status of RF dipole Cavity

- Awaiting surface treatment and testing at JLAB
 - Considering alternate events if JLAB test stand does not become available as planned
- HOM damping scheme under study
 - Waveguide or Coaxial
- Design of an LHC-compatible full system for SPS test to start soon

Multipacting Analysis

Based upon Track3D

Double Ridge

Quarter Wave

^e Cryomodule Design and Integration

- Cryomodule to be developed at FNAL
- Adapted from linearizer system for FLASH

– ~2m long, 1m OD

- Final integration and testing at FNAL before shipping to CERN
- Engineering integration meeting at FNAL on December 13-14, 2012

Kicks off global collaboration with technical issues

Cryomodule Reference Design

Cavity Development Summary

- All three candidate designs will go through comprehensive vertical testing in early 2013
- Starting integration into a cryomodule design for SPS test (and consistent with LHC implementation) with a meeting at FNAL on December 13-14, 2012
- Auxiliary systems designs (HOM dampers, tuners, diagnostics...) underway

Present Focus

- Demonstration cryomodule under development for a possible beam test in the SPS before LS2

 Vertical tests of all three cavities
- Cross functional working group in place at CERN to develop feasibility for SPS test
 - Operations, RF, Vacuum, Cryogenics, Beam Dynamics, Machine Protection, Collimation, Instrumentation...
- Recommended as a result of CC-11

Phased approach

- Prototype Phase
 - Ongoing R&D through LARP and EuCard
 - Demonstrate feasibility, validate design and prototype through a test with protons in the SPS
 - Through 2015
- Construction
 - Cryomodule production (US construction project and/or EU funding)
 - From 2016 to HL-LHC

Timeline

Final Implementation

(2022-23?)**Prototype Cryomodule Cavity Testing** Production 2012 2013 2016 2018-23 2014 2015 2017 1.51 1.52 SM18 SPS Cavity CM Tests Beam Tests Validation Crab Cavity prototypes, SM18/SPS tests 2012 2013 2014 2015 2016 LS1 CC vertical tests in SM18 Test cryostat design Test cryostat construction SM18 test of proto cryomodule SPS Beam testing SPS Cryo 2k & upgrade (Details from Cryo) Vacuum work at SPS (2-3 weeks needed) SLAC Collimator installation in SPS (TbD) **RF** Power installation in SPS

Conclusions

- Recent developments show very promising potential for RF deflecting cavities
- Plan to perform RF testing and measurements in 2013
- CERN is developing a plan for testing one cryomodule with beam in the SPS by LS2
- Upon successful completion of the SPS test, the collaboration is planning to request funding to build a system for installation during LS3

Questions

Sextupole Component

- Due to symmetry the 4R cavity doesn't have even components to the crab kick (monopole, quadrupole, octopole etc)
- The dominant error term comes from the sextupole component (m=3).
- The m=3 term of a simplified shape was studied.
- It can be seen that the m=3 term can be reduced to zero by simply modifying the angle of the focusing electrodes

4 Rod Prototype

Multipacting Analysis

- Track3P Particle tracking code in the SLAC ACE3P Suite
- For the 400 MHz square-shaped crabbing cavity

LARP

Z. Li et.al., in Proceedings of the 3rd IPAC, New Orleans, Louisiana (2012), p. 2185

Multipactor on the beam pipe was found on

Multipacting

From Track3P

