

Direct photon measurement in pp @ 7 TeV with EMCal, the ALICE electromagnetic calorimeter

Alexis Mas for the ALICE collaboration

Outline

- I Physics motivation
- II Isolated photons: two measurements with ALICE
 - a) Imbalance parameter for parton Fragmentation Function (FF) study
 - b) Isolated photons to constrain Parton Distribution Functions (PDFs)
- III Conclusions and outlook

Direct photon production

Direct photons: produced in ultra-relativistic hadron collisions via « hard processes »

Cross section of direct photons can be estimated by QCD calculations:

$$\sigma_{\gamma,\text{direct}} \approx \sum_{a,b} f_{a/A} x f_{b/B} x \sigma_{\text{hard process}}$$

Parton Distribution Functions (PDFs): ≈ probability of a parton **a**, **b** to be present in a hadron **A**, **B** (e. g. proton)

Hard process cross section, calculable with QCD

Direct photon production: PDF constraint

Direct photon production & jet quenching

A.Mas Hot Quarks'12 5

Direct photon production: FF constraint

$$x_E = -\frac{p_T^h}{p_T^{\gamma}} cos(\Delta \phi)$$

$$x_E \simeq z = \frac{p_T^h}{p^{parton}}$$

Trigger on photon

gamma-hadron correlations

ALICE Detector Setup

ALICE Detector Setup

EMCal

Electromagnetic shower

- 10 super modules composed of 24x12 modules
- 11520 towers grouped by 4 (module)
- Granularity : $\Delta \eta \times \Delta \phi = 0.014 \times 0.014 \text{ rad}$
- 78 layers of scintillator separated by 77 lead layers (~ 19 X₀)
- Acceptance : $\Delta \varphi = 100^{\circ}$, $|\eta| < 0.7$
- Measurement of particles (electrons, photons) at high p_T

Photon identification

I - Charged particle veto

Selection of clusters that are not matching a track ($\Delta \eta > 0.02 \& \Delta \phi > 0.03$)

II - Shower shape discrimination $(\lambda_0^2 < 0.27)$

$$\lambda_0^2 = 0.5*(d_{xx} + d_{zz}) + \sqrt{(0.25*(d_{xx} - d_{zz})^2 + d_{xz}^2)}$$

Background: mainly Π^0

Photon isolation

Imbalance parameter measurement

Photon candidate sample = Signal (direct photons) + Background (mainly π^0)

$$x_E^{\gamma \ iso} = \frac{1}{p} x_E^{cluster \ iso} - \frac{(1-p)}{p} x_E^{\pi^0 \ iso}$$

Purity estimation

Data driven method using the difference of shower profile (λ_0^2) between direct photons and background:

The 3 following λ_0^2 distributions are needed:

- $(\lambda_0^2)^{sig}$: from gamma-jet simulation
- $(\lambda_0^2)^{\text{bkg}}$: from data, particles that fail isolation criterion
- $(\lambda_0^2)^{\text{sig+bkg}}$: from data, particles that satisfy isolation criterion

Purity is extracted from combined fit:

$$p = \frac{S}{(S+B)}$$

13

X_E of isolated photons

$$x_E^{\gamma \, iso} = \frac{1}{p} \, x_E^{cluster \, iso} - \frac{(1-p)}{p} \, x_E^{\pi^0 \, iso}$$

First step for comparison of x_E in pp and in Pb-Pb:

Access to medium modified parton fragmentation function

ALI-PREL-34327

Isolated photons: spectrum measurement

Isolation criterion

$$\sum E_{\text{T,in cone}}$$
 < 2 GeV (R=0.4)

BG template = clusters with $0.5 < (\lambda_0^2) < 2$

Signal+BG = clusters with $0.1 < (\lambda_0^2) < 0.3$

ISO= E_{T}^{cone} - E_{T}^{UE}

Signal+BG - BG template =

Isolated photon raw yield

15

Toward a cross-section of direct photons

$$\sigma(pp \to \gamma_{dir} + X) = \frac{N_{\gamma}^{iso} \times p}{(\varepsilon \otimes \mathcal{A})^{reco\&iso} \times \varepsilon_{trigger} \times \mathcal{L}_{int}}$$

- N_{γ}^{iso} p:
- $oldsymbol{\mathcal{L}_{int}}$
- $(\varepsilon \otimes \mathcal{A})^{reco\&iso}$, $\varepsilon_{trigger}$:
- Systematics uncertainties estimation

Toward a cross-section of direct photons

$$\sigma(pp \to \gamma_{dir} + X) = \frac{N_{\gamma}^{iso} \times p}{(\varepsilon \otimes \mathcal{A})^{reco\&iso} \times \varepsilon_{trigger} \times \mathcal{L}_{int}}$$

• N_{γ}^{iso} p: shown today

- \mathcal{L}_{int}
- $(\varepsilon \otimes \mathcal{A})^{reco\&iso}$, $\varepsilon_{trigger}$:
- Systematics uncertainties estimation

Integrated luminosity

Integrated luminosity for EMCal triggered data has been determined:

Rejection factor computed from minimum bias data:

$$\mathcal{L}_{int} = 380 \, nb^{-1} \pm 40 \; (stat)$$

Toward a cross-section of direct photons

$$\sigma(pp \to \gamma_{dir} + X) = \frac{N_{\gamma}^{iso} \times p}{(\varepsilon \otimes \mathcal{A})^{reco\&iso} \times \varepsilon_{trigger} \times \mathcal{L}_{int}}$$

• N_{γ}^{iso} , p: shown today

• $\mathcal{L}_{int} = 380 \, nb^{-1} \pm 40 \, (stat)$

- $(\varepsilon \otimes \mathcal{A})^{reco\&iso}$, $\varepsilon_{trigger}$:
- Systematics uncertainties estimation

Toward a cross-section of direct photons

$$\sigma(pp \to \gamma_{dir} + X) = \frac{N_{\gamma}^{iso} \times p}{(\varepsilon \otimes \mathcal{A})^{reco\&iso} \times \varepsilon_{trigger} \times \mathcal{L}_{int}}$$

• N_{γ}^{iso} p: shown today

• $\mathcal{L}_{int} = 380 \, nb^{-1} \pm 40 \, (stat)$

- $(\varepsilon \otimes \mathcal{A})^{reco\&iso}$, $\varepsilon_{trigger}$:
- Systematics uncertainties estimation

Analyzes ongoing

Conclusions & outlook

Conclusions

- Shape of fragmentation function in pp at 7 TeV via x_E measurement for $p_T \in [8; 25]$ GeV/c : baseline for Pb-Pb
- Isolated photon raw spectrum for $p_{_T} \in [10; 50] \text{ GeV/c}$

Outlook

- Study modification of fragmentation function in medium (x_E measurement in Pb-Pb)
- Constraint gluon PDF with isolated photon cross section in pp @ 7 TeV

	p _T range (GeV/c)	η range	reference
CMS	20 – 300	-1.45 - 1.45	PRL106(2011)082001
ATLAS	45 - 400	-1.37 - 1.37	Phys.Lett. B706(2011)150
ALICE (with e+ e-)	0.5 - 11	-0.9 - 0.9	ALICE
ALICE (in EMCal)	10 - 50	-0.3 - 0.3	ALICE

BACK UP

Purity computation: 2nd method

Data driven method: based on the difference of the isolation probability between photons and background:

The 3 following isolation efficiencies are needed:

- ε^{sig} : from gamma-jet simulation

$$-\varepsilon^{\text{bkg}} = \frac{B^{iso}}{B^{tot}}$$
 from data, particles selected with: 0.35< $\lambda_0^2 < 1.5$

$$-\varepsilon^{\text{sig+bkg}} = \frac{(B+S)^{iso}}{(B+S)^{tot}} \text{from data, particles selected with: } 0.1 < \lambda_0^2 < 0.27$$

We can extract purity:
$$p = \frac{\epsilon^{sig}(\epsilon^{sig+bkg} - \epsilon^{bkg})}{\epsilon^{sig+bkg}(\epsilon^{sig} - \epsilon^{bkg})}$$

Purity computation: 2nd method

assumption:
$$(S+B) \times \epsilon^{sig+bkg} = B \times \epsilon^{bkg} + S \times \epsilon^{sig}$$

$$\frac{S}{S+B} = \frac{\epsilon^{sig+bkg} - \epsilon^{bkg}}{\epsilon^{sig} - \epsilon^{bkg}}$$

$$p = \frac{S^{iso}}{S^{iso} + B^{iso}} = \frac{S \times \epsilon^{sig}}{S \times \epsilon^{sig} + B \times \epsilon^{bkg}} = \frac{\frac{S}{S+B} \times \epsilon^{sig}}{\frac{S}{S+B} \times \epsilon^{sig} + \frac{B}{S+B} \times \epsilon^{bkg}}$$

$$p = \frac{\epsilon^{sig}(\epsilon^{sig+bkg} - \epsilon^{bkg})}{\epsilon^{sig+bkg}(\epsilon^{sig} - \epsilon^{bkg})}$$

Photon identification

Shower shape of clusters after TM:

Direct photon production & jet quenching

A.Mas Hot Quarks'12 26

the medium modifying their fragmentation

π⁰ identification

Shower shape from neutral clusters

Invariant mass of splitted clusters

QA cuts/selection

Clusterizer V1 with:

- Minimum energy of the seed: 100 MeV
- Minimum energy of a cell: 50 MeV

Cluster selection:

- Eclus > 0.3 GeV
- Ncells/cluster: at least 2 cells
- Distance to bad channel: at least 2 cells
- Exotic clusters removed

Photon selection:

We only consider **clusters > 8 GeV as photon candidates** to be far from trigger threshold (5.5 GeV except first runs which have 4 GeV threshold)

Fragmentation photon and isolation

R. Ichou, D. d'Enterria, Phys.Rev D 82(2010)014015

L0 counter pile-up

In one bunch crossing (BC) we can have several p-p (Pb-Pb) collisions but the L0 counter will only count one event. To correct for this effect we use P which corresponds to the average number of MB event per L0 count, with Poisson law assumption we obtain:

Average number of MB event per BC

$$\mathsf{P} = \frac{\mu^{MB}}{1 - e^{-\mu^{MB}}} \simeq 1 + \frac{\mu^{MB}}{2}$$

