

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Azimuthal Anisotropy of Direct Photons in Pb-Pb Collisions at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

Daniel Lohner for the ALICE Collaboration

GRK 1039: Development and Application of Intelligent Detectors

Photon Production in Pb-Pb Collisions

Direct Photons = Photons not produced by particle decays (e.g. π^0)

pp and Pb-Pb

- Prompt photons from hard initial scattering (NLO pQCD)
 - O Predominant source in pp
 - Signal scales with binary collisions in Pb-Pb (cold nuclear matter effects?)

O Fragmentation photons

• May be modified by parton energy loss in the medium

only Pb-Pb

- O Thermal photons
 - Scattering of thermalized particles (QGP)
 - Hadronic interactions (HG)

O Jet-plasma photons

- Scattering of hard partons with thermalized partons
- **O** In-medium bremsstrahlung

What can we learn from Direct Photons?

Direct Photons = Photons not produced by particle decays (e.g. π^0)

- Photons come out from every stage of the system evolution
- O Mean free path of photons much larger than system size
 - No interaction with medium (direct photon $R_{AA} = I^*$)
- Photons carry undistorted information about system at their production time
 - Hadrons carry system information at kinetic freeze-out

* PHENIX arXiv:1205.5759 [nucl-ex]

Direct Photon Spectrum QM 2012

*T_c \approx 170 MeV M. Cheng et al. <u>arXiv:hep-lat/0608013</u>

- Spectrum consistent with NLO (pQCD) above 4 GeV/c
- O Excess at low p_T interpreted as thermal photon signal
- Effective temperature $T^{Eff}=(304 \pm 51) \text{ MeV}$

O $T^{\text{Eff}} > T_c^* \Rightarrow \text{dominant}$

contribution from QCD phase

Azimuthal Anisotropy of Particle Production

- Initial azimuthal asymmetry coordinate space in non-central $A+A \Rightarrow$ momentum space
- **O** Low p_T : elliptic flow (collective expansion)
- O High p_T: path length dependence of in-medium parton energy loss
- **O** Fourier decomposition:

$$\frac{dN}{d\phi} = \frac{1}{2\pi} \left(1 + 2\sum_{n \ge 1} v_n \cos(n(\phi - \Psi_n^{RP})) \right) \quad \text{v}_2: \text{elliptic flow}$$

х

Azimuthal Anisotropy of Particle Production

N 0.4

0.35

0.3

0.25

0.2

0.15

0.1

- Initial azimuthal asymmetry 0 coordinate space in non-central $A+A \Rightarrow$ momentum space
- Low p_T : elliptic flow (collective expansion)
- High p_T : path length Ο dependence of in-medium parton energy loss
- Fourier decomposition:

ALICE preliminary, Pb-Pb events at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

40%-50%

▲ 20%-30%

10%-20%

• 5%-10%

 $\pi^{\pm}, v_{2}^{2} \{2, |\Delta \eta| > 1\}$

What can we learn from direct photon v₂?

ALICE Detector and Data Sample

- **O** Pb-Pb at $\sqrt{s_{NN}}=2.76 \text{ TeV}$
- O 17 M min. bias events (2010)

O Photon conversion probability in $|\eta| < 0.9$ up to R = 180 cm at 8.5 %

- D Track reconstruction in TPC and ITS
- Electron identification using TPC dE/dx and TOF
- O Reconstruction of V0 decay vertex using Kalman filter

9

Measurement of Direct Photon v₂

$$v_2^{\text{direct Y}} = (Rv_2^{\text{incl Y}} - v_2^{\text{decay Y}})/(R-I)$$

- **O** Ratio $R = N^{\text{incl } \gamma} / N^{\text{decay } \gamma}$
- **O** Inclusive photon $v_2^{incl \gamma}$
- **O** Decay photon $v_2^{\text{decay }\gamma}$ from cocktail simulation

Measurement of Double Ratio 0-40%

- $R=I: N^{incl \gamma}=N^{decay \gamma} \Rightarrow$ no direct photons
- Double Ratio $R > I :\Rightarrow$ contribution of direct photons $N^{\text{direct } \gamma} = (I - I/R) N^{\text{incl } \gamma}$ Daniel Lohner@cern.ch

Measurement of Direct Photon v₂

$$v_2^{\text{direct Y}} = (Rv_2^{\text{incl Y}} - v_2^{\text{decay Y}})/(R-I)$$

- **O** Inclusive photon $v_2^{incl \gamma}$
- **O** Decay photon $v_2^{\text{decay }\gamma}$ from cocktail simulation

Inclusive Photon v₂ Analysis

Inclusive Photon v₂ 0-40%

O Magnitude increases with decreasing centrality

O Similar to hadrons

Measurement of Direct Photon v₂

$$v_2^{\text{direct Y}} = (Rv_2^{\text{incl Y}} - v_2^{\text{decay Y}})/(R-I)$$

Ratio
$$R = N^{\text{incl } \gamma} / N^{\text{decay } \gamma}$$

- Inclusive photon $v_2^{incl \gamma}$
- **O** Decay photon $v_2^{\text{decay }\gamma}$ from cocktail simulation

Cocktail Simulation - Spectra

- O π^0 parametrized with measured 0-40% spectrum
- **O** Higher resonances from m_T scaling

Comparison of Inclusive and Decay Photon v₂ and Interpretation

O Above 3 GeV/c inclusive photons significantly smaller than decay photons

- There must be a direct photon contribution with smaller v₂
- O Below 3 GeV/c consistent within uncertainties
 - Either contribution of direct photons with similar
 v₂ or no direct photons

Measurement of Direct Photon v₂

$$v_2^{\text{direct Y}} = (Rv_2^{\text{incl Y}} - v_2^{\text{decay Y}})/(R-I)$$

Direct Photon v₂ 0-40% and Conclusions

- O Direct photons in 0-40% have a significant nonzero elliptic flow below 3 GeV/c
- O Magnitude of v₂ comparable to hadrons
 - O Unexpected from T^{Eff}
 - O Similar results reported by PHENIX (RHIC)

Backup

Effective Temperature from PHENIX

- O Exponential thermal photon spectrum
- Inverse slope $T^{Eff} \simeq 220 \pm 20 \text{ MeV}$
- O T_i from hydro 300-600 MeV (PHENIX <u>arXiv:0912.0244</u>)
 - ⇒ Photons produced at early time

Direct Photon v2 from PHENIX

- O Large v₂^{direct} compared to hadron v₂ supports theory of production in hadronic phase
- **O** Temperature ($T^{Eff} \approx 220 \pm 20 \text{ MeV}$) favors early production time

Hadron EM decay modes

Meson	Mass (MeV/ c^2)	Decay Mode	Γ_i/Γ (%)
π^0	(134.9766 ± 0.0006)	2γ	(98.798 ± 0.032)
		$e^+e^-\gamma$	(1.198 ± 0.032)
η	(547.51 ± 0.18)	2 γ	(39.38 ± 0.26)
		$\pi^+\pi^-\gamma$	(4.69 ± 0.11)
		$e^+e^-\gamma$	$(6.0\pm0.8) imes10^{-3}$
		$\pi^0 ~\gamma$	$(4.4 \pm 1.6) \times 10^{-4}$
ρ	(775.5 ± 0.4)	$\pi^+\pi^-\gamma$	$(9.9 \pm 1.6) \times 10^{-3}$
		$\pi^0~\gamma$	$(6.0\pm0.8) imes10^{-4}$
		$\eta \gamma$	$(2.95\pm0.30) imes10^{-4}$
ω	(782.65 ± 0.12)	$\pi^0 \gamma$	$(8.9^{+0.27}_{-0.23})$
		$\eta \gamma$	$(4.9\pm0.5) imes10^{-4}$
η'	(957.78 ± 0.14)	ργ	(29.4 ± 0.9)
		ωγ	(3.03 ± 0.31)
		2γ	(2.12 ± 0.14)
φ	(1019.460 ± 0.019)	$\eta \gamma$	(1.301 ± 0024)
		$\pi^0 ~\gamma$	$(1.25 \pm 0.07) \times 10^{-3}$
		ωγ	< 5