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o Modification of transverse momentum fluctuations by 

viscosity 

 

o Transverse momentum fluctuations have been used as an 

alternative measure of viscosity 

 

o Estimate the impact of viscosity on fluctuations using best 

information on EOS, transport coefficients, and fluctuating 

hydrodynamics 

Motivation 

Sean Gavin & Mohamed Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302 

STAR: H. Agakishiev et al, Phys.Lett. B704 (2011) 467  



o Small variations of initial transverse flow in each event 

o Viscosity arises as the fluid elements shear past each other 

o Shear viscosity drives the flow toward the average  

o damping of radial flow fluctuations    viscosity 
Sean Gavin & Mohamed Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302 

Fluctuations of transverse flow 



Helmholtz decomposition: 

Momentum density current 

Transverse momentum fluctuations 

First, from non-relativistic hydro: 
 
Linearized Navier-Stokes  

viscous diffusion 

Transverse modes:    

sound waves (damped by viscosity) 

Longitudinal modes:  
  

It is the transverse modes that we are interested in. 



Dissipative relativistic hydrodynamics 

Conservation of energy-momentum: 

ideal dissipative 

 Equations of relativistic 

     viscous hydrodynamics 

First order (Navier-Stokes) hydro: 

Second order (Israel-Stewart) hydro: 

A. Muronga, Phys.Rev. C69, 034903 (2004) 



Linearized hydro and diffusion of flow fluctuations 

Linearized Navier-Stokes for transverse flow fluctuations: 
 
             
   
  
        g transverse component   

Linearized Israel-Stewart for transverse flow fluctuations: 
 
       

First order diffusion violates causality!  

This saves causality!  



Two-particle transverse momentum correlations 
and first order diffusion 

      satisfies the diffusion equation    r  satisfies 
 
      
   
   
       

Two-particle momentum correlation 

first order 
2

each ion-collision event . Such deviat ions occur, e.g., be-

cause the number and locat ion of nucleon-nucleon sub-

collisions varies in each event .

Viscous frict ion arises as neighboring fluid elements

flow past each other. This frict ion reduces u, driving

the velocity toward the local average vr . The final size

of the velocity increment u depends on the magnitude of

the viscosity and the lifet ime of the fluid.

In order to illust rate how the damping of radial flow

fluctuat ions depends on the viscosity of the fluid, we in-

t roduce a velocity increment in the radial direct ion u

that depends only on the longitudinal coordinate z and

t. Our aim is to determine the linear responseof the fluid

to this perturbat ion. For simplicity, we take the unper-

turbed flow as slowly varying, and work in a co-moving

frame where vr locally vanishes. As in (2), the flow of

neighboring fluid elements at different radial speeds u(z)

produces a shear st ress

Tzr = − η∂u/ ∂z. (3)

This stress changes the radial momentum current of the

fluid, which is generally T0r = γ2( + p)vr for energy

density , pressure p, and γ = (1 − v2)− 1/ 2 [14]. The

perturbat ion u results in the change gt (x) = δT0r ≈ ( +

p)u in the co-moving frame. On the other hand, the

energy-momentum conservat ion law ∂µT µν = 0 implies

∂gt / ∂t = − ∂Tzr / ∂z.

We combine these results to obtain a diffusion equat ion

for the momentum current

∂

∂t
− ν∇ 2 gt = 0 (4)

to linear order, where the kinemat ic viscosity is given

by (1), since + p ≈ Ts for small net baryon density.

Observe that (4) applies for any fluctuat ion gt for which

∇ · gt = 0 [14]; our physically-mot ivated radial gt (z, t) is

a specific instance of such a flow. Such shear modes are

related to sound waves (compression modes) but diffuse

rather than propagate. Note that the scale over which

sound is at tenuated Γs = (4η/ 3+ ζ)/ Ts depends on both

shear and bulk viscosity [14, 15].

Viscosity tends to reduce fluctuat ions by dist ribut ing

the excess momentum density gt over the collision vol-

ume. This effect broadens the rapidity profile of fluc-

tuat ions. We write (4) in terms of the spat ial rapidity

y = 1/ 2 ln(t + z)/ (t − z) and proper t ime τ = (t2− z2)1/ 2

to find ∂gt / ∂τ = (ν/ τ 2)∂2gt / ∂y2. A similar equat ion is

used to study net charge diffusion in ref. [16], and we can

translate many of those results to the present context .

Defining V ≡ (y − y )2 = y2gt dy/ gt dy for y = 0,

we compute the rapidity broadening

∆ V =
2ν

τo

1−
τo

τ
, (5)

where ∆ V ≡ V − V (τo) for τo the format ion t ime.

FIG. 1: Rapidity spread vs. t ime for momentum diffusion
computed using (5) and (7) for the large viscosity (viscous)
and small viscosity (perfect ) scenarios discussed in the text .
The gray area marks the range ext rapolated from data in

ref. [8] using (14).

We extend this discussion to address a more general

ensemble of fluctuat ions by considering the correlat ion

funct ion

rg = gt (x1)gt (x2) − gt (x1) gt (x2) . (6)

In local equilibrium, rg has the value rg, eq. The spat ial

rapidity dependence of ∆ r g ≡ rg − rg, eq is broadened by

momentum diffusion. If the rapidity width of the one-

body density follows (5), then the width of ∆ r g in the

relat ive rapidity yr = y1 − y2 grows from an init ial value

σ0 following

σ2 = σ2
0 + 2∆ V(τf ), (7)

where τf is the proper t ime at which freeze out occurs.

This equat ion is ent irely plausible, sincediffusion spreads

the rapidity of each part icle in a given pair with a vari-

ance ∆ V . We then take

∆ rg(yr , ya) ∝ e− y2
r / 2σ2 − y 2

a / 2Σ 2

, (8)

where (7) gives the width in relat ive rapidity and the

width in average rapidity ya = (y1 + y2)/ 2 is Σ. We

assume Σ σ [16]. Observe that (7) and (8) are exact

for our diffusion model [16].

Gyulassy and Hirano survey computat ions of the rat io

of the shear viscosity to the entropy and find that both

the hadron gas and the perturbat ive quark gluon plasma

have η/ s ∼ 1, if one naively ext rapolates these calcula-

t ions near TC [3]. These values correspond to ν = η/ Ts

roughly of order 1 fm for TC = 170 MeV. On the other

hand, they argue that the entropy increase near TC re-

duces η/ s for a strongly interact ing plasma, perhaps to

the supersymmetric Yang-Mills value η/ s = 1/ 4π.

Mot ivated by these est imates, we show the increase of

σ given by (5) and (7) as a funct ion of proper t ime τ for

two extreme and highly schemat ic scenarios in fig. 1. In

the ‘perfect ’ scenario, we take ν ∼ 0.1 fm for the plasma

and mixed phase, and ν ∼ 1 fm for the hadronic phase.

Sean Gavin & Mohamed Abdel-Aziz, 
Phys. Rev. Lett. 97 (2006) 162302 



 is temp. dependent 
T. Hirano and M. Gyulassy, 
Nucl. Phys. A769, 71(2006), 

nucl-th/0506049. 

EOS I ->  Lattice  s95p-v1 
 
EOS II -> Hirano & Gyulassy  T. Hirano and M. Gyulassy, Nucl. Phys. A769, 71(2006), nucl-th/0506049. 

P. Huovinen and P. Petreczky, Nucl.Phys. A837, 26(2010), 0912.2541 
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in Eq. (5) is the universal minimal viscosity to entropy
rat io even for QCD. In that case, the viscosity of the
sQGP could be up to a factor of ∼ 1/ 2π smaller than
of a wQGP. It is then tempt ing to conclude that the
sQGP must have anomalously small viscosity if perfect
fluid behavior is observed. However, as we show below,
the sQGP viscosity is actually very close to that of ordi-
nary hadronic mat ter just below Tc.

To develop this argument further, we first digress to
recall that the entropy density in the Nc 1, g2Nc 1
limits of N = 4 SYM is given by [27]

sSY M =
3

4
+

0.6

(g2Nc)3/ 2
+ O

1

N 2
c

4

3
K SY M T 3 . (6)

where the Stefan-Boltzmann constant for N = 4 SYM is
K SY M = π2(N 2

c − 1)/ 2 ≈ 39.5 is about 3 t imes greater
than K SB of our QCD world [26]. What is especially re-
markable about Eq. (6) is that , at infinitely st rong cou-
pling, the ent ropy density is only reduced by ∼ 25% from
its non-interact ing SB value. On the other hand, the vis-
cosity in this extreme limit is reduced about an order
of magnitude from the weak coupling value and limited
only by the quantum (Heisenberg uncertainty) bound on
the effect ive scat tering rate. Current lat t ice data on the
QCD viscosity near Tc [28] are with large numerical error
barsbetween these weak and super st rong coupling limits
but the relat ively small deviat ion of the lat t ice entropy
density from the SB limit is consistent with Eq. (6).

The AdS/ CFT lower bound (5) together with the as-
sumed universal 3/ 4 reduct ion of the SB entropy density
implies that the absolute value of the sQGP viscosity at
Tc would be

ηsQGP (T ) ≈ ηSY M (T ) =
K SB T 3

4π
≈ T 3

c

T

Tc

3

(7)

where we used a fact that for QCD K SB ≈ 12–15 is acci-
dentally close to 4π. The monotonic increase of ηSY M (T )
is illust rated by the dashed curve in Fig.1.

The effect ive t ransport crosssect ion via Eq. (1) at Tc ∼
160 MeV is in this case

σc
t r ≈

4

5

Tc

ηc

∼ 12 mb . (8)

Here ηc ≡ T 3
c = 0.106 GeV/ fm2 at Tc = 0.16 GeV. See

Ref. [29] for an independent est imate of the transport
cross sect ion in the sQGP phase leading to similar σt r (T )
near Tc.

While there is no consensusyet on what physical mech-
anisms could enforce the minimal viscosity bound in the
sQGP [18, 30, 31], we take as empirical fact that the
sQGP viscosity must be close (within a factor of two)
to the minimal (uncertainty) bound, Eq. (7). Our cen-
t ral assumpt ion is that local thermal equilibrium is main-
tained in the sQGP core with minimal dissipat ive devia-
t ions and with the equat ion of state and hence speed of
sound as predicted by QCD. Alternate scenarios, with ar-
bit rary equat ions of statewith higher speed of sound that
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Tc
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HRG

FIG. 1: I llust rat ion of the approximately monotonic increase
of absolute value of the shear viscosity with temperature.
The kink shown at Tc is expected to be smeared out by the
∆ Tc / Tc ∼ 0.1 width of the QCD cross-over t ransit ion. The
solid blue curve shows η(T < Tc ) = T/ σH for a HRG followed

by the more rapid increase of the viscosity in the sQGP phase
with ηsQ G P ≈ ηSY M ≡ K SB T 3 / 4π ≈ T 3 . The horizontal line

shows that near Tc , η ≈ ηc ≡ T 3
c . At high T Tc asymptot ic

freedom leads to an even more rapid growth of viscosity as
the sQGP evolves gradually into the weakly coupled wQGP.
In this figure, w = 1 in Eq. (10) is taken to emphasize the

possibility that the highly viscous but nearly“ perfect fluid”
sQGP may become an ordinary “ viscous fluid” already for
T >
∼ 2Tc .

in principle could compensate the higher dissipat ion and
viscosity in a wQGP will not be considered here. In this
connect ion we also emphasize the importance of fixing
sQGP init ial condit ions with Color Glass Condensate or
saturat ing gluon dist ribut ions const rained by the global
entropy observables [11, 32]. With fixed init ial condit ions
and equat ion of state, the remaining degrees of dynam-
ical freedom are reduced to the dissipat ion correct ions
discussed in this sect ion for the sQGP phase and the
dynamical const raints on its dissipat ive hadronic corona
discussed in the subsequent sect ions.

Note that the effect ive t ransport cross sect ion in the
sQGP σc

t r just above Tc is remarkably close to the
hadron resonance gas transport cross sect ion just below
Tc [19, 20]. However, due to the 1/ T 2 scaling at T ∼ 2Tc,
the effect ive transport cross sect ion in the sQGP would
already drop to∼ 3 mb while preserving the (uncertainty
principle) lower bound Eq. (5).

In contrast to the novel sQGP phase above Tc, for
T < Tc, mat ter iswell known to be in theconfined hadron
resonance gas (HRG) phase where the kinet ic theory vis-
cosity [16, 19] is

ηHRG ≈
T

σH

≈ ηc

T

Tc

, (9)

as illust rated by the solid curve below Tc in Fig. 1. Be-
cause the hadronic t ransport cross sect ions are typically
σH ∼ 10 − 20 mb, the combinat ion of Eqs. (7) and (9)

Second order diffusion of transverse momentum 
correlations 

Entropy density s(T) depends on equation of state (EOS) 



Entropy density and EOS 

EOS I and EOS II  

T. Hirano and M. Gyulassy, Nucl. Phys. A769, 

71(2006), nucl-th/0506049 
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FIG. 2: I llust rat ion of the rapid variat ion of the dimension-
less ratio of the shear viscosity, η(T ), to the ent ropy den-
sity, s(T ). The sharp discont inuity illust rated is not due to
a rapid change of the t ransport coefficient (see Fig. 1) but to

the rapid increase of the ent ropy density in QCD near Tc . As

in Fig. 1, we expect the discont inuity to be smeared into a

rapid drop within ∆ Tc / Tc ∼ 0.1. Solid (dashed) blue curve
illust rates the change of η/ s of a HRG with c2

H = 1/ 3 (1/ 6),
sQ / sH = 10 (3) into an approximate “ perfect fluid” sQGP
at Tc . The red long dashed curve is (η/ s)SY M = 1/ 4π. At
T Tc asymptot ic freedom gradually t ransforms the sQGP

into an ordinary viscous fluid wQGP (green), here shown for
w = 1

2
, 1.

shows that we should not expect a large variat ion of the
absolute value of the mat ter viscosity across Tc if the
minimal η/ s holds above Tc. In Ref. [19], Gavin found
that for a pion gas with P-wave ρ and D-wave f 0 reso-
nance interact ions, the thermal averaged transport cross
sect ion and viscosity from his Fig. 3 are (η/ ηc, σH [mb]) ∼
(0.66, 20), (0.9, 17), (1.1, 15) for T = 180, 160, 140 MeV.
In Ref. [20], Muronga used the UrQMD resonance gas
Monte Carlo to compute η(T )/ ηc ∼ 0.75, 1.1, 1.9 for
T = 0.14, 0.16, 0.18 GeV. In both studies [19, 20] nu-
merical est imates are thus consistent with Eq. (9) for
T < Tc. For nonvanishing baryon density, see recent es-
t imates in Ref. [33].

In the sQGP phase, the minimal viscosity, Eq. (7), is
predicted to grow cubically with T beyond Tc. However,
at T Tc asymptot ic freedom predicts that it would
grow even more rapidly as the sQGP transforms grad-
ually into a wQGP. An interpolat ion formula between
these phases can be constructed as

η(T ) ≈ T 3
c

(T/ Tc)1, T < Tc

(T/ Tc)3[1 + w(T) ln(T/ Tc)]
2, T > Tc

(10)
The ext ra squared logarithmic growth of the viscosity at
T Tc is expected from Eq. (3). To be consistent with
the perturbat ive wQGP at T Tc one should take

w2(T Tc)

4π
=

9β2
0

80π2K SB

1

ln 1/ αs(T )
. (11)

With K SB = 12–15 and β0 = 11 − 2N f / 3 ∼ 9–10, a

possible scenario may be that w ∼ 1 already near Tc.
This possibility is shown in Fig. 1 by the solid curve
above Tc which would imply sQGP→ wQGP already
above ∼ (2 − 3)Tc. In fact , current lat t ice data on the
evolut ion of screening scales in the QGP phase suggest
that hadronic scale correlat ions may persist only up to
T ∼ 3Tc [34, 35]. A value w(T > 2Tc) ∼ 1, is also not in-
consistent with current lat t ice results [28]. We note that
future measurements of ellipt ic flow in A+ A collisions at
LHC with

√
sN N = 5500 GeV will be able to test exper-

imentally if such a precocious onset of dissipat ive wQGP
dynamics occurs.

The approximate cont inuity of the viscosity across Tc

indicated in Fig. 1 is to be understood to hold within a
factor on the order of unity. What changes rapidly at Tc

is not the viscosity of QCD matter but rather its entropy
density due to the deconfinement of the quark and gluon
degrees of freedom.

For a hadronic resonance gas charactered by a speed of

sound c2
H , theentropy density s(T) = sH (T/ Tc)1/ c2

H with
decreasing temperature decreases much more rapidly
than does the viscosity for typical c2

H ∼ 1/ 6–1/ 3. Just
beyond Tc –possibly only up to several t imesTc– it is pos-
tulated that the sQGP phase may exist with η/ s < 0.2
but with viscosity close to ideal gas.

Summarizing the discussion up to now, we expect that
η varies smoothly near Tc as in Fig. 1 while the rat io
η/ s may have a significant discont inuity due to the rapid
onset of deconfinement as a funct ion of T as shown in
Fig. 2. We therefore propose the following interpolat ion
formula for the temperature dependence of the η/ s rat io
with a T independent constant w

η(T )

s(T )
≈

1

4π

sQ

sH

T
Tc

1− 1/ c2
H

, T < Tc

[1 + w ln(T/ Tc)]
2

, T > Tc

(12)

with the negat ive discont inuity

η

s Tc

=
η(Tc)

s(Tc) Q

−
η(Tc)

s(Tc) H

= −
1

4π

sQ

sH

− 1 . (13)

We illust rate Eq. (12) in Fig. 2. Note that it is the en-
t ropy jump sQ / sH ∼ 3–10 that causes a drop of η/ s
across Tc. Since the HRG→ sQGP transit ion with dy-
namical quarks appears from the lat t ice QCD to be only
a rapid crossover, the discont inuity is understood to be
spread out over a temperature range ∆ Tc/ Tc ∼ 0.1.

I I I . I M PER F ECT F L U I D I T Y OF T H E
H A D RON I C C OR ON A

In the last sect ion we presented the case that the η/ s
rat io may be small enough aboveTc in the sQGP core for
perfect fluidity to arise during the crit ical first ∼ 3 fm/ c,
while the spat ial azimuthal asymmetry of thematter pro-
duced in non-central react ions is large enough to induce
collect ive ellipt ic flow. However, during the subsequent

Entropy production 
 ideal:     first order: 
 
 second order: 
 
We have used used both in our numerical solutions.  

A. Muronga, Phys.Rev. C69, 034903 (2004) 

Lattice: P. Huovinen and P. Petreczky, Nucl.Phys. 

A837, 26(2010), 0912.2541 
 



Diffusion vs Waves 

Diffusion fills the gap in 
between the propagating  
Wave 
 
 
 
 
Rapidity separation of the fronts 
saturates  
 
 



Choosing different initial widths 

Smaller initial widths resolves better 

R. Pokharel, S. Gavin, G. Moschelli in preparation  

Initial correlation is a normalized 
Gaussian  

Constant diffusion coefficient used in 
these examples plots 



STAR measured these correlations  

Sean Gavin & Mohamed Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302 

STAR:  H. Agakishiev 
et al, Phys.Lett. B704 
(2011) 467 



STAR measured these correlations  

STAR:  H. Agakishiev et al, 
Phys.Lett. B704 (2011) 467 

• Measured: rapidity width of near side peak – the ridge 
• Fit peak + constant offset  
• Offset is ridge, i.e., long range rapidity correlations   
• Report rms width of the peak 

h s = 0.17 ± 0.08

Central vs. peripheral 
increase consistent with  



NeXSPheRIO: Sharma et al., Phys.Rev. C84 (2011) 054915 
 
STAR: H. Agakishiev et al, Phys.Lett. B704 (2011) 467  

NeXSPheRIO  

Fluctuating ideal hydro, NeXSPheRIO vs Ideal 
hydro  
  

NeXSPheRIO 
calculations of 
width fails match 
the STAR data 

 
 



Results 
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R. Pokharel, S. Gavin, G. Moschelli in preparation  

Numerical results vs STAR 

Relaxation time: 
τπ = 5-6, AMY, Phys. Rev. D79, 054011  

(2009), 0811.0729 

τπ = 6.3, J. Hong, D. Teaney, and P. M. 

Chesler (2011), 1110.5292  

STAR:  H. Agakishiev et al, Phys.Lett. B704 (2011) 467 
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Results 

R. Pokharel, S. Gavin, G. 

Moschelli in preparation  

C :  second order vs STAR 

STAR:  H. Agakishiev et al, Phys.Lett. B704 (2011) 467 
STAR unpublished data:  M. Sharma and C. Pruneau, private communications.  
 

• Bumps in central to mid-central 
case in data and second order 
diffusion calculations 
 

• No such bumps in the first order 
case means bumps are second 
order diffusion phenomena 
 

• First and second order entropy 
production equations give 
virtually the same results (plots 
not shown here). 

 
 



Results  

10-20% 

Evolution of C for 10-20% 

Second order vs first order 

R. Pokharel, S. Gavin, G. Moschelli in preparation  



Results 



Summary 

 First order hydro calculations do poor job in fitting the 
experimental (STAR) data. 
 

 NeXSPheRIO calculations (ideal hydro + fluctuations) of width 
show opposite trend in the variation of width with centralities 
compared to the data. 

 
 Widths given by second order diffusion agrees with STAR data.  
 
 Second order diffusion calculations show bumps in C for central 

to mid-central cases and this is also indicated by data.  
 
 Theory the bumps is clear: pronounced effect of wave part of 

the causal diffusion equation.  



Thank You 
 



Notations & conventions:      

Backups 

R. Baier, P. Romatschke, and U. A. Wiedemann, 
Phys.Rev. C73, 064903 (2006), U. W. Heinz, H. Song, and A. K. 
Chaudhuri, Phys.Rev. C73, 034904 (2006) 
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each ion-collision event . Such deviat ions occur, e.g., be-

cause the number and locat ion of nucleon-nucleon sub-

collisions varies in each event.

Viscous frict ion arises as neighboring fluid elements

flow past each other. This frict ion reduces u, driving

the velocity toward the local average vr . The final size

of the velocity increment u depends on the magnitude of

the viscosity and the lifet ime of the fluid.

In order to illustrate how the damping of radial flow

fluctuat ions depends on the viscosity of the fluid, we in-

troduce a velocity increment in the radial direct ion u

that depends only on the longitudinal coordinate z and

t. Our aim is to determine the linear responseof thefluid

to this perturbat ion. For simplicity, we take the unper-

turbed flow as slowly varying, and work in a co-moving

frame where vr locally vanishes. As in (2), the flow of

neighboring fluid elements at different radial speeds u(z)

produces a shear stress

Tzr = − η∂u/ ∂z. (3)

This stress changes the radial momentum current of the

fluid, which is generally T0r = γ2( + p)vr for energy

density , pressure p, and γ = (1 − v2)− 1/ 2 [14]. The

perturbat ion u results in the change gt (x) = δT0r ≈ ( +

p)u in the co-moving frame. On the other hand, the

energy-momentum conservat ion law ∂µTµν = 0 implies

∂gt / ∂t = − ∂Tzr / ∂z.

Wecombine theseresults to obtain a diffusion equat ion

for the momentum current

∂

∂t
− ν∇ 2 gt = 0 (4)

to linear order, where the kinematic viscosity is given

by (1), since + p ≈ Ts for small net baryon density.

Observe that (4) applies for any fluctuat ion gt for which

∇ · gt = 0 [14]; our physically-mot ivated radial gt (z, t) is

a specific instance of such a flow. Such shear modes are

related to sound waves (compression modes) but diffuse

rather than propagate. Note that the scale over which

sound is attenuated Γs = (4η/ 3+ ζ)/ Ts depends on both

shear and bulk viscosity [14, 15].

Viscosity tends to reduce fluctuat ions by distribut ing

the excess momentum density gt over the collision vol-

ume. This effect broadens the rapidity profile of fluc-

tuat ions. We write (4) in terms of the spat ial rapidity

y = 1/ 2 ln(t + z)/ (t − z) and proper t ime τ = (t2− z2)1/ 2

to find ∂gt / ∂τ = (ν/ τ 2)∂2gt / ∂y2. A similar equat ion is

used to study net chargediffusion in ref. [16], and we can

translate many of those results to the present context.

Defining V ≡ (y − y )2 = y2gt dy/ gt dy for y = 0,

we compute the rapidity broadening

∆ V =
2ν

τo

1−
τo

τ
, (5)

where ∆ V ≡ V − V(τo) for τo the format ion t ime.

FIG. 1: Rapidity spread vs. t ime for momentum diffusion
computed using (5) and (7) for the large viscosity (viscous)

and small viscosity (perfect ) scenarios discussed in the text .
The gray area marks the range ext rapolated from data in

ref. [8] using (14).

We extend this discussion to address a more general

ensemble of fluctuat ions by considering the correlat ion

funct ion

rg = gt (x1)gt (x2) − gt (x1) gt (x2) . (6)

In local equilibrium, rg has the value rg, eq. The spat ial

rapidity dependence of ∆ rg ≡ rg − rg, eq is broadened by

momentum diffusion. If the rapidity width of the one-

body density follows (5), then the width of ∆ rg in the

relat ive rapidity yr = y1 − y2 grows from an init ial value

σ0 following

σ2 = σ2
0 + 2∆ V(τf ), (7)

where τf is the proper t ime at which freeze out occurs.

Thisequat ion isent irely plausible, sincediffusion spreads

the rapidity of each part icle in a given pair with a vari-

ance ∆ V. We then take

∆ rg(yr , ya) ∝ e− y2
r / 2σ2− y2

a / 2Σ 2

, (8)

where (7) gives the width in relat ive rapidity and the

width in average rapidity ya = (y1 + y2)/ 2 is Σ. We

assume Σ σ [16]. Observe that (7) and (8) are exact

for our diffusion model [16].

Gyulassy and Hirano survey computat ions of the rat io

of the shear viscosity to the entropy and find that both

the hadron gas and the perturbat ive quark gluon plasma

have η/ s ∼ 1, if one naively extrapolates these calcula-

t ions near TC [3]. These values correspond to ν = η/ Ts

roughly of order 1 fm for TC = 170 MeV. On the other

hand, they argue that the entropy increase near TC re-

duces η/ s for a strongly interact ing plasma, perhaps to

the supersymmetric Yang-Mills value η/ s = 1/ 4π.

Mot ivated by these est imates, we show the increase of

σ given by (5) and (7) as a funct ion of proper t ime τ for

two extreme and highly schemat ic scenarios in fig. 1. In

the ‘perfect ’ scenario, we take ν ∼ 0.1 fm for the plasma

and mixed phase, and ν ∼ 1 fm for the hadronic phase.




