

Inclusive jet spectra in 2.76 TeV Pb-Pb collisions from ALICE

Rosi Reed, on behalf of the ALICE Collaboration Yale University

Outline

- Introduction
- Fully reconstructed jets in ALICE
- Hadronic Correction
- pp Jet Spectra
- Pb-Pb Jet Spectra
- R_{AA}
- Conclusions

What is a Jet?

There is no unambiguous definition of what a jet is!

- Colored partons undergo a hard scatter and hadronize into a spray of particles
- Expected to reflect the kinematics and topology of the hard scattered partons
- Jets are defined by algorithm used to find them

S.D Drell, D.J.Levy and T.M. Yan, Phys. Rev. **187**, 2159 (1969) N. Cabibbo, G. Parisi and M. Testa, Lett. Nuovo Cimento **4**,35 (1970) J.D. Bjorken and S.D. Brodsky, Phys. Rev. D 1, 1416 (1970) Sterman and Weinberg, Phys. Rev. Lett. 39, 1436 (1977) ... and many more

Jets in Heavy-Ion Collisions

Jets make an ideal probe of the medium

- Partons from hard scattering are produced early
- Propagating parton is modified by the QCD medium
- Observation of jet quenching indicates modification
- Experimental challenges
 - Need to remove underlying event contribution

• Jet
$$p_{\rm T} = p_{\rm T}^{\rm rec} - \rho A$$

- A = Jet area
- ρ = Underlying event momentum density
- $p_{\rm T}^{\rm rec}$ = Jet $p_{\rm T}$ from jet finder

Jet Finding Algorithms

Matteo Cacciari, Gavin P. Salam, Gregory Soyez, arXiv:0802.1189v2

Background

Not dependent on hardest particles – samples backgound

Signal

Creates round jets around the hardest particles!

Jets at ALICE

Tracking: $|\eta| < 0.9, 0 < \varphi < 2\pi$ TPC: gas detector \longrightarrow Charged ITS: silicon detector constituents Rosi Reed - Hot Quarks 2012

Jets at ALICE

- EMCal is a Pb-scintillator sampling calorimeter which covers:
 - $|\eta| < 0.7, 1.4 < \phi < \pi$
 - tower $\Delta\eta \sim 0.014$, $\Delta\phi \sim 0.014$

Charged hadronic correction prevents double counting

Neutral

constituents

Tracking: $|\eta| < 0.9, 0 < \Phi < 2\pi$ TPC: gas detector \longrightarrow Ch ITS: silicon detector CON Rosi Reed - Hot Quarks 2012

Charged _____ constituents

Hadronic Correction

- We need to correct the double counting of charged energy deposited in EMCal
 - Energy deposition is a statistical process
 - Corrected in unfolding
- Charged tracks matched to clusters and clusters are corrected by: $E_{cluster}^{cor} = E_{cluster}^{orig} f \sum p^{matched}, E_{cluster}^{cor} \ge 0$

Jet Reconstruction

- Input to the Jet Finder
 - Assumed to be massless
 - Charged tracks with $p_T > 150 \text{ MeV/c}$ (pp, Pb-Pb)
 - EMCal clusters with $E_T > 300$ MeV after hadronic correction: (pp, Pb-Pb)

•
$$E_{cluster}^{cor} = E_{cluster}^{orig} - f \sum p^{matched}, \quad E_{cluster}^{cor} \ge 0$$

- For pp analysis f = 100%
- Jets reconstructed using FastJet package
 - R = 0.2 (pp, Pb-Pb)
 - Anti-k_T for signal jets (pp, Pb-Pb)
 - k_T for ρ calculation (Pb-Pb)
 - EMCal jets: Fiducial cut requires jet fully contained in the EMCal acceptance (pp, Pb-Pb)

Detector Effects - pp

- Bin-by-bin technique
 - Compare the simulated cross sections before and after Detector response
 - Use uncorrected spectrum in data as weighting function
- Shift of jet energy scale ~ 20-25%
 - Unmeasured neutrons and K⁰_L's: compare proton and kaon spectra to data; PYTHIA vs HERWIG
 - Tracking inefficiency: track quality in data vs simulation
 - Residual hadronic correction for EMCal: data-driven check
 - JES uncertainty ~ 4%
- Jet energy resolution ~ 18%
 - Detector resolution: data-driven check + test beam
 - Fluctuations (e-by-e) in correction of jet energy scale

pp Baseline Result

- Green and magenta bands: NLO on Parton level
- Blue band: NLO + hadronization
- Red points: Pythia8.
 Shifted horizontally for visibility
- $f_{hadcor} = 100\%$, R = 0.2, $p_T > 150 \text{ MeV/c}$ $E_T > 300 \text{ MeV}$

Good agreement between data and NLO calculations as well as Pythia8 prediction within both experimental and theoretical uncertainties

Rosi Reed - Hot Quarks 2012

Charged+Neutral Background Determination

• 4.9 vs 4.5 GeV/c

Rosi Reed - Hot Quarks 2012

Fluctuation size characterized by $\delta p_{\rm T}$

• Embedded particle $\delta_{p_T} = p_T^{rec} - \rho_{ch+em} A^{Anti-k_T} - p_T^{emb}$ • Random Cones $\delta_{pT} = p_T^{rec} - \rho_{ch+em} \pi R^2$

Leading Track $P_T > 5$ GeV/c

 Reduces combinatorial background, improves unfolding stability

Fully Reconstructed Jet Spectrum See Salvatore's talk 0-10% Centrality

 Jets are corrected for background fluctuations and detector effects in unfolding

Systematics:

- ~19% (p_T dependent)
- EMCal effects (Resolution, scale, clusterizer, nonlinearity)
- Unfolding
- Tracking efficiency
- Background

Fully Reconstructed Jet R_{AA} 0-10% Centrality

 $\sigma_{_{pp}}$

 $d^2 N_{jets}$

 $\frac{V_{events}}{T_{AA}} \frac{dp_T d\eta}{dr_{AA}}$

- We want to understand how partons lose energy in the medium and where that lost energy goes
- Nuclear modification factor (R_{AA}) $T_{AA} = \frac{\# Binary Collisions}{\sim}$ can help quantify jet suppression
 - Which reference pp spectrum should be used?
 - Biased?
 - Same as Pb-Pb
 - Unbiased?
 - Calculable
 - IR and colinear safe

Fully Reconstructed Jet R_{AA} 0-10% Centrality

- Biased pp reference
- Biased Pb-Pb
- Jets are suppressed in a p_T dependent manner

Bias/Unbiased pp in Pythia ~0.85 for 30-40 GeV/c

LHC Jet R_{AA} (R_{CP}) Comparison

- All experiments see Jet suppression in central Pb-Pb collisions at 2.76TeV
 - Comparison is complicated
 - R, η , p_T constituent, Background
 - Need apples-to-apples

CMS and ALICE

- ALICE and CMS are consistent within overlap region
 - Same R
 - Different constituent cuts
- Complementary results

Conclusions

- Reporting on a corrected fully reconstructed jet spectrum from 2011 Pb-Pb data in 0-10% in ALICE
- First full jet R_{AA} with $p_{T,jet} < 100 \text{ GeV}/c$ at the LHC
- R = 0.2 jets are suppressed in 0-10%
 - Further study needed
 - Variations on jet radius
 - Event plane dependence
- R = 0.3 measurement coming soon!
- All experiments should work towards an Apples-to-Apples comparison!

Back-up

Rosi Reed - Hot Quarks 2012

Hadron RAA

21

Rosi Reed - Hot Quarks 2012

Anti-kT Sequential Recombination Algorithm

$$d_{ij} = \min(\frac{1}{p_{ti}^2}, \frac{1}{p_{tj}^2}) \frac{\Delta R_{ij}^2}{R^2}$$

$$\Delta R_{ij}^{2} = (y_{i} - y_{j})^{2} + (\phi_{i} - \phi_{j})$$

Creates round jets around the hardest particles!

Procedure

- compute all d_{ij} and d_{iB}
- Find minimum of the d_{ii} and d_{iB}
- If it is a d_{ii}, recombine i and j into a new particle
- otherwise declare it to be a jet and remove it from the sample
- Repeat until all particles are used
 Rosi Reed Hot Quarks 2012

kΤ

Sequential Recombination Algorithm

$$d_{ij} = \min(k_{ii}, k_{ij}) \frac{\Delta R_{ij}^2}{R^2} \qquad \Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

$$d_{iB} = k_{ti}^2$$

Procedure

- compute all d_{ii} and d_{iB}
- Find minimum of the d_{ii} and d_{iB}
- If it is a d_{ii}, recombine i and j into a new particle
- otherwise declare it to be a jet and remove it from the sample
- Repeat until all particles are used

What are we trying to learn Jets in heavy ions?

24

Good Jet Finding Algorithms

- Jets are defined by the algorithms that create them
- A good algorithm defines jets that are:
 - The same for
 - experimental analysis
 - Monte Carlo Simulations
 - analytical parton calculations
 - collinear safe
 - IR safe
 - not sensitive to the hadronization mechanism
- Collinear safe emission of a collinear gluon does not change the jet
- IR safe emission of a soft gluon does not change the jet

25

Different jet cone size

No strong dependence on jet radius

```
Marguerite Belt Tonjes
```

Quark Matter 2012, Washington DC

14

Unfolding

UE and detector effects result in finite JER

- Jet spectrum is steeply falling
- Result is significant bin migration
- Use MC to generate response matrix
 - Contains information about bin migration
- SVD unfolding
- **h**ep-ph/9509307
 - Invert response using curvature constraint on result to regularize unfolding
- Unfolding checks
 - Apply to MC, look for bias
 - "Refold" data, check refolded looks like input

