

Measurement of beam energy dependent nuclear modification factors at STAR

Stephen Horvat

Yale University

For the STAR Collaboration

16 October 2012

Outline

- The RHIC Beam Energy Scan (BES)
- Nuclear modification factors
 - High Energy Results
 - Results from the BES
- Model Comparisons
- Alternative methods to measure quenching

Beam Energy Scan

- Search for the critical point
- Search for a first order phase transition
- Look for the turn off of key QGP signatures
 - nuclear modification factor
 - dihadron correlations
 - ..

Nuclear Modification Factor

hard scatterings produce early high p_T probes

$$R_{CP} = \frac{(N_{bin})_{P}}{(N_{bin})_{C}} \times \frac{\left(\frac{d^{2}N}{p_{T}dp_{T}d\eta}\right)_{C}}{\left(\frac{d^{2}N}{p_{T}dp_{T}d\eta}\right)_{P}}$$

N_{part} ≡ number of participating nucleons

N_{bin} ≡ number of binary collisions (from Glauber)

Suppression of high p_T

- high p_T charged hadrons are suppressed
- cold nuclear matter effect?
 - Check d + Au collisions

'Suppression' ≡ R_{CP} < 1

'Quenching' ≡ loss of energy for high momentum particles

Phys. Rev. Lett. 91, 172302 (2003)

Cronin Effect

- Not Suppressed...
 Enhanced
- Protons are more enhanced than pions
 - → maybe pions are better probes?

Competing Effects

- We would expect unmodified R_{CP} to equal 1 (at high p_T)
- Quenching leads to suppression
- The Cronin Effect leads to enhancement
- What we measure has contributions from both

- → An R_{CP} > 1 can still have quenching
- \rightarrow An R_{CP} < 1 can still have enhancement

Expectations for the BES

- Suppression is observed at $\sqrt{s_{NN}} = 200 \text{GeV}$ and is attributed to a QGP
- We expect a smaller and shorter lived QGP at lower beam energies \rightarrow less quenching as $\sqrt{s_{NN}}$ decreases

The Solenoid Tracker At RHIC (STAR)

Data

- These data are from phase 1 of the BES at RHIC
- Starting in 2015 phase 2 will provide additional statistics and energies for $\sqrt{s_{\rm NN}} < 20 {\rm GeV}$

$\sqrt{s_{NN}}$ (GeV)	Year	N _{Ev} MB
7.7	2010	3.7M
11.5	2010	7.3M
19.6	2011	33M
27	2011	64M
39	2010	116M
62.4	2010	62M
200	2003	4M

Spectra

 Peripheral spectra shows stronger dependence on beam energy

R_{CP}

- Suppression turns off below 39GeV
 - The Cronin Effect dominates lower beam energies
 - It is not clear where quenching turns off

To Measure Quenching

This motivates alternative methods to measure quenching

- 1. triggered dihadron correlations
- 2. species dependence through identified R_{CP}
- 3. comparison to models
- 4. variation from patterns found by scaling

HIJING

HIJING version 1.35 with jet quenching turned off

- Similar beam energy dependence and Cronin Enhancement
- Looking into other HIJING tunes as well as AMPT

Alternative Scaling

- It can be expected that the proper scaling would reveal trends independent of $\sqrt{s_{NN}}$ in the high p_T regime
- x_T scaling was not enough on its own

$$x_{T} = \frac{2p_{T}}{\sqrt{s_{NN}}}$$

• The y-axis was also scaled by $(\sqrt{s_{NN}}/\text{GeV})^{6.5}$

These are simply differently scaled spectra from p+p collisions

There may be centrality dependence to the exponent (6.5)

x_T scaling

- No beam energy independent trends emerge from x_T scaling alone
- If the scale on the yaxis has centrality dependence then we would want to scale the these results by $(\sqrt{s_{NN}}/\text{GeV})^n$

Scaling the y-axis

- Also scaling the yaxis by √s_{NN} (n=1) a possible trend emerges
- The trend is what appears to be an asymptotic behavior in the high p_T regime
- $\sqrt{s_{NN}} \ge 39 \text{GeV dips}$ below the curve at high p_T (consistent with quenching)

PID Spectra

Positive particles

 Again, the peripheral collisions have stronger beam energy dependence

 Also note that pions have a stronger beam energy dependence

PID R_{CP}

Positive particles

- Protons are enhanced relative to pions, similar to measurements in d + Au at $\sqrt{s_{NN}}$ = 200GeV
- Pion suppression turns off at low energies (but still have some Cronin enhancement)

PID R_{CP}

Negative particles

- Behavior is similar to positive particles
- Anti-protons are suppressed relative to protons at low p_T (consistent with annihilation)

Data that would help

- Cronin's data already showed beam energy dependence in the Cronin Effect
- running p + Au or d + Au for each energy would allow further study of this dependence

Conclusions

- Charged R_{CP} is suppressed for 200, 62, and 39GeV data-sets
- Efforts are being made to measure quenching
- Clear energy ordering is observed
- The Cronin Effect dominates the lower beam energies
- Scaling might demonstrate beam energy independent trends and quenching could emerge as deviation from these trends
- A complimentary study of identified $R_{\rm CP}$ shows the species dependence for the Cronin Effect

Backups

N_{part} Scaling

- Soft physics regime
- Weak energy dependence

Dihadron Correlations

- Di-jets produced in heavy ion collisions traverse the medium
- Triggering on high p_T particles we look at the distribution of correlated particles
- At $\sqrt{s_{NN}}$ = 200GeV we see quenching of the away-side

Phys. Rev. Lett. 91 (2003) 072304

