Hadronic resonances at ALICE

Anders G. Knospe on behalf of the ALICE Collaboration The University of Texas at Austin Hot Quarks 20 October 2012

Outline

- Introduction
- Resonances in pp at \sqrt{s} = 7 TeV
 - $\phi(1020), K^*(892)^0, \Sigma^*(1385)^{\pm}$
 - In progress: $\rho(770)^{0}$, $\Delta(1232)^{++}$, $\Lambda^{*}(1520)$, $\Xi^{*}(1530)^{0}$
 - Resonances in Pb–Pb at $\sqrt{s_{NN}}$ = 2.76 TeV
 - φ(1020), K*(892)⁰

Name	Mass (MeV/ <i>c</i> ²)	Width (MeV/c ²)	Decay Products	Branching Ratio
K*(892) ⁰	895.94	48.7	π K ⁺ , π ⁺ K	66.6%
φ(1020)	1019.455	4.26	K⁻K⁺	48.9%
Σ*(1385) ⁺	1382.80	36.0	$\pi^{*}\Lambda \to \pi^{*}\pi^{-}p$	56.0%
Σ*(1385) ⁻	1387.2	39.4	$\pi^-\Lambda \rightarrow \pi^-\pi^-p$	56.0%

•

•

Resonances in pp

- Provide input for QCD-inspired models (PHTHIA, PHOJET, ...)
 - Models tuned using particle spectra
- Baseline for comparison with A–A collisions
 - Masses, widths, particle ratios in absence of partonic medium
 - Denominator for R_{AA}

Resonances in A–A

Temperature and lifetime of fireball (hadronic phase)

- Resonance formation through recombination
- Re-scattering prevents resonance reconstruction
- Statistical models, UrQMD predict resonance/non-resonance ratios
 - Given chemical freeze-out temperature and time between chemical and thermal freeze-out (Δt)
- Chiral symmetry restoration
 - Resonances may decay when chiral symmetry was (at least partially) restored
 - Mass shift and width broadening
 - Near $T_{c} \rho$ lifetime may increase by factor of ~5*

ALICE Detector

Find decay products

Find π^{\pm} , K[±], p, \overline{p} :

- Track cuts: Number of TPC clusters track χ^2 DCA to primary vertex Others...
- Particle Identification: TPC energy loss TOF particle velocity

ALI-PERF-26575

1.01

1.02

1.03

1.04

Invariant mass (GeV/c²)

1.05

Resonances in pp Collisions at $\sqrt{s} = 7$ TeV (K^{*0}, ϕ , $\Sigma^{*\pm}$)

K*(892)⁰ in pp

80 M Events
Decay products: π[±]K[∓]
PID: TOF
If no TOF signal, TPC used

Pair Cuts: $|y_{pair}| < 0.5$ Background: Like-sign (event mixing) Residual Background: 2nd-order polynomial Peak Fit: Breit-Wigner

invariant mass (GeV/c²)

ALI-PERF-26583

φ(1020) in pp

60 M Events Decay products: K⁻K⁺ PID: TPC + TOF if signal present

Pair Cuts: $|y_{pair}| < 0.5$ Background: Event mixing (like-sign) Residual Background: 2nd-order polynomial Peak Fit: Voigtian

Σ*(1385)[±] in pp

211 M Events Decay products: $\Lambda \pi^{\pm} \rightarrow p \pi^{-} \pi^{\pm}$ Track cuts: DCA of decay daughters Λ pointing angle

Pair Cuts: $|y_{pair}| < 0.8$ Background: Event mixing Residual Background: parametrized using MC, scaled to match data Peak Fit: Breit-Wigner

K*(892)⁰ and ϕ (1020) in pp

Σ*(1385)[±] in pp

PYTHIA ATLAS-CSC: good agreement for $p_{\tau} > 2 \text{ GeV}/c$ **PHOJET**; **PYTHIA D6T**, **Perugia 2011**: under-predict data

Resonances in Pb–Pb Collisions at $\sqrt{s_{_{NN}}} = 2.76$ TeV (K*⁰, ϕ)

K*(892)⁰ in Pb–Pb

8.2 M Events Decay products: $\pi^{\pm}K^{\mp}$ PID cuts: TPC

Pair Cuts:
$$|y_{pair}| < 0.5$$

Background:
Like-sign
Residual Background:
1st-order polynomial
Peak Fit: Breit-Wigner

φ(1020) in Pb–Pb

9.5 M Events Decay products: K⁻K⁺ PID cuts: TPC

Pair Cuts: $|y_{pair}| < 0.5$ Background: Event mixing (like-sign) Residual Background: 2nd-order polynomial Peak Fit: Breit-Wigner

Masses and Widths

Similar values from fits of MC data Resolution = $1-2 \text{ MeV}/c^2$

 $p_{T}^{}$ (GeV/c)

ALICE

PERFORMANCE

18/07/2012

3

20

0.05

0.04 0.03

0.02

0.01

ALI-PERF-27590

Width:

²¹ K*(892)⁰ and $\phi(1020)$ in Pb–Pb

Corrected Spectra fit with Boltzmann-Gibbs Blast-Wave functions For ϕ : fit used to extrapolate yield to low p_{τ} (~15% of total d*N*/d*y*)

R_{CP} for K*(892)⁰ and ϕ (1020)

lower than Λ

 $p_{_{\rm T}}$ < 1.5 GeV/*c*: lower than K[±]

Caveat: Different centrality bins in numerator and denominator

VS.

- $< p_{\uparrow} >$ in pp at $\sqrt{s} = 7$ TeV:
 - Consistent with peripheral Pb–Pb
 - Lower than central Pb–Pb
- <p₁> at LHC energies is greater than <p₁> at RHIC energies
- ALICE π/K/p spectra: global Blast-Wave fit shows ~10% increase in <β₁> over RHIC**
 - Suggest stronger radial flow at LHC than at RHIC
 - ALICE K^{*0} , $\phi < p_{T} >$ results consistent with this conclusion

**arXiv:1208.1974v1 (ALICE)

STAR K^{*0}: *Phys. Rev.* C **71** (2005) 064902, *Phys. Rev.* C **84** (2011) 34909 STAR φ: *Phys. Rev.* C **79** (2009) 064903, *Phys. Lett.* B **612** (2005) 181

Particle Ratios vs. $< N_{part} >$

- K^{*0}/K⁻ decreases for central collisions
 - Suggests possible rescattering effects in central collisions
- φ/π independent of centrality

•

K*⁰/K⁻ Ratio vs. Energy

- K^{*0}/K⁻: ratio in central Pb–Pb less than in pp
 - Similar behavior at RHIC
- Model predictions for central Pb-Pb:
 - Andronic *et al*. (*T*=164 MeV):
 - $K^{*0}/K^{-} = 0.310$
 - *Phys. Lett. B* 673 (2009) 142
 - Rafelski et al. (T=160 MeV):
 - Without re-scattering: $K^{*0}/K^{-} = 0.5$
 - With re-scattering: $K^{*0}/K^{-} = 0.2 \rightarrow$ lifetime \geq 5 fm/c
 - Phys. Lett. B 509 (2001) 239

ϕ/π , ϕ/K Ratios vs. Energy

 ϕ/π independent of energy at LHC energies

- Ratio in Pb–Pb below GC thermal model (Andronic *et al.*)
- $\boldsymbol{\phi}/K$ independent of energy and collision system
 - Ratio in Pb–Pb consistent with GC thermal model (Andronic *et al.*)

Conclusions

- Resonances in pp
 - Analyses of ρ^0 , Δ^{++} , Λ^* , Ξ^{*0} in progress
 - K^{*0} and ϕ spectra compared to event generators:
 - PYTHIA Perugia 2011 describes K^{*0} and high- p_{τ} (<3 GeV/c) ϕ well
 - PHOJET and PYTHIA ATLAS-CSC describe $p_{T} > 1 \text{ GeV}/c$
 - PYTHIA D6T describes $p_{\tau} < 2 \text{ GeV}/c$
 - $\Sigma^{\star\pm}$ spectra described by PYTHIA ATLAS-CSC for $p_{\tau} > 2 \text{ GeV}/c$

Resonances in Pb-Pb

- Mass and Width:
 - K^{*0} mass consistent with pp, width consistent with PDG
 - ϕ : deviates from PDG, but similar values observed for simulated peaks
- $< p_{T} >$ at LHC energies larger than at RHIC:
 - Suggests increased radial flow (cf. ALICE π /K/p spectra)
- K*⁰/K⁻ smaller in central collisions than in peripheral Pb–Pb or pp
 - Suggests possible re-scattering effects in central collisions

Backup Slides

Track and PID Cuts

K*(892)⁰ in pp:

$$\begin{split} p({\rm K}^{\pm}) &< 0.7 \; {\rm GeV/c} \\ p_{_{\rm T}} &< 1.5 \; {\rm GeV/c} : 2\sigma_{_{\rm TOF}} \\ p_{_{\rm T}} &> 1.5 \; {\rm GeV/c} : 3\sigma_{_{\rm TOF}} \\ {\rm If \; no \; TOF \; signal} : \\ p_{_{\rm T}} &< 0.35 \; {\rm GeV/c} : 5\sigma_{_{\rm TPC}} \\ 0.35 &< p_{_{\rm T}} &< 0.5 \; ({\rm GeV/c}) : 3\sigma_{_{\rm TPC}} \\ p_{_{\rm T}} &> 0.5 \; {\rm GeV/c} : 2\sigma_{_{\rm TPC}} \end{split}$$

ϕ (1020) in pp: $p_{T} < 0.35 \text{ GeV/c: } 2\sigma_{TPC}$ $p_{T} > 0.35 \text{ GeV/c: } 3\sigma_{TPC}$ If TOF signal present: $3\sigma_{TOF}$

$K^{*}(892)^{0}$ and $\phi(1020)$ in Pb–Pb:

Σ*(1385)[±] in pp:

 $\begin{aligned} \mathsf{DCA}_{xy}(\Lambda) &< 0.5 \text{ cm} \\ \mathsf{DCA}_{xy}(\pi^{\pm}) &< 0.05 \text{ cm} \\ \mathsf{DCA} \Lambda \text{ daughters} &< 0.5 \text{ cm} \\ \mathsf{cos}(\Lambda \text{ pointing angle}) &> 0.99 \end{aligned}$

Standard Track Selection Cuts: $p_{\tau} > 0.15 \text{ GeV/c}$ $|\eta| < 0.8$

Number of TPC clusters > 70 χ^2 per cluster in TPC < 4 > 1 cluster in ITS DCA₂ < 2 cm Reject kink daughters

 $2\sigma_{_{\mathrm{TPC}}}$

$\Sigma^{*\pm}$ Residual Background

Residual background from correlated $\Lambda\pi$ pairs

- Monte-Carlo simulations
- Fit with 3rd-order polynomial (1)
- Scaled to match residual background in real data (2)
- Lp pairs from $\Lambda^*(1520) \rightarrow \Lambda \pi \pi$ decays:
 - Monte-Carlo simulations:
 - Fit with Gaussian, mean and σ extracted
 - Real data:
 - Fit with Breit-Wigner peak (Σ^*) + Gaussian (Λ^* contamination) (3)
 - Gaussian mean and σ constrained using value from simulations

Example Plots: $2.4 < p_{T} < 3 \text{ GeV/}c$

