

eRHIC

"standard model of heavy ion collisions"

our understanding of some fundamental properties of the glasma, sQGP, and hadron gas depend strongly on our knowledge of the initial state!

3 conundrums of the initial state:

I. what is the spatial transverse distributions of gluons?
2. how much does the spatial distribution fluctuate? lumpiness, hot-spots etc.

3. how saturated is the initial state of the nucleus?

wouldn't it be nice if we could measure the initial state directly?

what has been measured?

electron colliding with fixed ion target, large x charge distribution - no gluons!

what can eRHIC do?

DIS ep and eA

diffraction ep and eA

diffraction ep and eA

why is diffraction so great?

diffraction sensitive to gluon momentum distributions²:

Saturday, October 20, 2012

can constrain models a lot with a few months of running! already in Stage 1!

why is diffraction so great? e' e hadrons Mx Q^2 rapidity gap *p*'/A' $t = (p - p')^2$ *р*/А depend on t, momentum transfer to proton/ion. Fourier transform of t-distribution

transverse spatial distribution spatial imaging!

how to measure $t = (P_A - P_A')^2$

need to measure $P_{A'}$ coherent case: A' disappears down beam pipe incoherent case: cannot measure all beam remnants

> only possibility: Exclusive diffraction $e+A \rightarrow e'+VM+A'$ $t=(P_{VM}+P_{e'}-P_{e})^{2}$

eRHIC predictions: new physics event generator sartre

exclusive diffractive vector meson and DVCS production in eA

t. ullrich & t.t.

eRHIC predictions: sartre dipole model with glauber bSat and bNonSat

eRHIC predictions: exclusive diffraction with Sartre

Can constrain models a lot with a few months of running! First 4 dips obtainable.

summary

diffraction in eA is a great tool for measuring:
I. a signal for gluon saturation
2. gluon spatial distribution in nuclei

saturation signal, day 1 measurement via diffractive/total ratio

gluon spatial distributions in nuclei available in a model independent way via exclusive heavy vector mesons, s.a. J/ϕ

eRHIC truly an ultra high resolution femtoscope for probing the initial state of nuclei

back up

What is being measured?

Coherent Diffraction (γ^* +IP) Slide from J.H. Lee, Analysis: R. Debbe in UPC at RHIC

Coherent diffractive ρ production in Au +Au at $\sqrt{s_{NN}}=200$ GeV

- Data: STAR/RHIC
 Ultra-peripheral
 AuAu Collision
- Simulation: Sartre No t-smearing in Sartre

bSat vs. bNonSat at HERA mesons No distinguishing power!

eRHIC can probe the difference!

Probing the spatial gluon distribution at eRHIC

Amplitude is a Fourier transform from position to momentum space:

$$\left\langle \mathcal{A}_{T,L}(Q^{2},\Delta,x_{I\!\!P})\right\rangle_{\Omega} = \int \pi r \mathrm{d}r \mathrm{d}z b \mathrm{d}b (\Psi_{V}^{*}\Psi)_{T,L} (Q^{2},r,z)$$
$$J_{0}([1-z]r\Delta)J_{0}(b\Delta) \left\langle \frac{\mathrm{d}\sigma_{q\bar{q}}}{\mathrm{d}^{2}\mathbf{b}} \right\rangle_{\Omega} (x_{I\!\!P},r,b)$$

Cross-section:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} = \frac{1}{16\pi} \left| \left\langle \mathcal{A}_{T,L}(Q^2, \Delta, x_{I\!\!P}) \right\rangle_{\Omega} \right|^2$$

Fourier transform again to retain spatial distribution:

$$F(b) = \frac{1}{2\pi} \int_0^\infty d\Delta \Delta J_0(\Delta b) \sqrt{\frac{d\sigma_{\text{coherent}}}{dt}(\Delta)} \bigg|_{\text{mod}}$$

Probing the spatial gluon distribution at eRHIC

Amplitude is a Fourier transform from position to momentum space:

question, 2 answers

Initial and final state multiple scattering

Initial state saturation model

How saturated is the initial state?