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Motivation

A wish list for a theorist:
I would like to “touch” and “see”
the initial conditions.
I would like to “feel” the hot
medium.
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In quantitative terms:

Can we observe the initial energy
deposition and geometry
fluctuations?
Can we distinguish between
energy loss models?
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Introduction

Tomography:
Tomography means slice imaging.
Today this term is applied to many methods used
to reconstruct the internal structure of an object
from external measurements.

Two types of
tomography:

Probe emitted by
the object.
Probe that has
been emitted by
an external
source.
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Introduction

A medical analog: PET Scan
Inject (short-lived) positron emitting
isotope (tracer).
Positron annihilates with electron giving
pair of back to back 0.511 MeVgammas.
Detect both gammas using fast (5 ns)
coincidences

Image Reconstruction
We want to reconstruct the distribution of
the tracer in the slice being imaged.
The measurements made are converted
into samples of the Radon transform of the
unknown distribution.
Use inverse Radon transform.

p(ξ, φ) =
∫

f (x , y)δ(x cosφ+ sinφ− ξ)dxdy
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Initial State Fluctuations

Origin
Fluctuations in the initial
energy density.
Fluctuations in the
position of the hard
process are also
important.

dN
PT dPT dΦ

=
dN

2πPT dPT

[
1 + 2

∑
n>0

vn(PT ) cos(nΦ + δn)

]
How do fluctuating backgrounds affect the vn?

Rodriguez & Fries (AMU Texas A&M) Azimuthal Asymmetries 10/15/2012 6 / 17



Experimental Program is Already Underway
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Experimental Program is Already Underway
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Similar pT dependence for all flow coefficients.
Weak centrality dependence observed for v3-v6

For the 5% most central events v2 < v3 

|η|<2.5
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Energy Loss Models and Simulation

LPM-inspired
dE
dx = csLPM · ρ(τ) · (τ − τ0)
csLPM = 0.085 GeV

ASW-BDMPS
P(∆E ; R, ωc) = p0δ(∆E) + p(∆E ; R,wc)
We compute the integrals h1(r, ψ) and h2(r, ψ):

hn ≡
∫ ∞

0
(τ − τ0)n q̂(τ) dτ n = 0,1

with q̂ = cASW · ρ(τ), ωc = h1 and R = 2h2
1/h0.

cASW = 2.8 GeV

Fits done to Rπ0
AA data at RHIC
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Initial Geometry and Eccentricity

Engineered events
We need a generalization of the
concept of eccentricity:

εi =

√
〈r i cos(iφ)〉2 + 〈r i sin(iφ)〉2

〈r i〉

We also need a generalization of
the flow coefficient v2:

vj = 〈cos(j(φ− δj ))〉

where

δj =
1
j

arctan
〈pT sin(jφ)〉
〈pT cos(jφ)〉
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Correlations Between Eccentricity and Asymmetry
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Correlations Between Eccentricity and Asymmetry

vi is a monotonous function of εi
vj = 0 for εi if i 6= j except when j is a multiple integer of i .
Multiple coefficients are expression of the symmetry of the underlying
geometry.
vj decrease in magnitude with j .

1
m

∫ 2π

0
cos(iφ) dφ =

∫ 2π

0
cos(imα)dα
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Distributions in Realistic Fluctuating Backgrounds

Again we performed a scan in vi vs εj
using realistic geometries.
We obtained:

No correlation between vi and εi
except for i = j = 2 in the n = 2
geometry.
For this geometry v2 is
proportional to e2

There is centrality dependence,
which sharpens and defines the
value of the eccentricity.
v1 with a value of a few percent in
the most central collisions, without
correlations with ε1
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Distributions of Event Plane Phases For Realistic
Events I
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Distributions of Event Plane Phases For Realistic
Events II
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We are observing some multiple
moments

Origin is the n = 2 geometry
Explanation is in the “best square”
and “best hexagon”
Perhaps a way to distinguish
between v4 coming from ε2 and
from ε4
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Transverse Momentum Dependence of Azimuthal
Asymmetry Coefficients
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Conclusions

The presence of vn with n odd confirms the existence of
initial geometries different from n = 2.
vn do not allow to distinguish between different models of
energy loss.
For the case n = 2, correlations between v2 and ε2 persist
even when averaged over many events.
Phases provide with a way to distinguish between same
coefficients coming from different initial geometries.
v1 is surprisingly large and maybe a way to look into
fluctuations in the position of hard events and initial
energy deposition.
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