Azimuthal asymmetries from jet quenched in fluctuating backgrounds Hot Quarks 2012

Ricardo Rodriguez¹ Rainer Fries²

¹Ave Maria University

²Cyclotron Institute and Texas A&M University

October 14-21, 2012

<ロト (四) (三) (三)

Outline

- 2 Introduction
- 3 Fluctuations
- Energy Loss Models and Simulation
- Initial Geometry and Eccentricity
- 6 Correlations Between Eccentricity and Asymmetry
- Distributions of Event Plane Phases For Realistic Events
- Transverse Momentum Dependence of Azimuthal Asymmetry Coefficients
- Conclusions

Motivation

A wish list for a theorist:

- I would like to "touch" and "see" the initial conditions.
- I would like to "feel" the hot medium.

In quantitative terms:

- Can we observe the initial energy deposition and geometry fluctuations?
- Can we distinguish between energy loss models?

Introduction

Tomography:

- Tomography means slice imaging.
- Today this term is applied to many methods used to reconstruct the internal structure of an object from external measurements.

- Probe emitted by
- Probe that has been emitted by

Introduction

A medical analog: PET Scan

- Inject (short-lived) positron emitting isotope (tracer).
- Positron annihilates with electron giving pair of back to back 0.511 MeVgammas.
- Detect both gammas using fast (5 ns) coincidences

Image Reconstruction

- We want to reconstruct the distribution of the tracer in the slice being imaged.
- The measurements made are converted into samples of the Radon transform of the unknown distribution.
- Use inverse Radon transform.

$$\mathcal{D}(\xi,\phi) = \int f(x,y)\delta(x\cos\phi + \sin\phi - \xi)dxdy$$

Initial State Fluctuations

Origin

- Fluctuations in the initial energy density.
- Fluctuations in the position of the hard process are also important.

$$\frac{dN}{P_T dP_T d\Phi} = \frac{dN}{2\pi P_T dP_T} \left[1 + 2\sum_{n>0} v_n(P_T) \cos(n\Phi + \delta_n) \right]$$

How do fluctuating backgrounds affect the v_n ?

10/15/2012 6 / 17

Experimental Program is Already Underway

Experimental Program is Already Underway

Higher order moments vs. p_{T} and centrality

14

Similar p_T dependence for all flow coefficients. Weak centrality dependence observed for v_3 - v_6 For the 5% most central events $v_2 < v_3$

Energy Loss Models and Simulation

LPM-inspired

•
$$\frac{dE}{dx} = c_{\text{sLPM}} \cdot \rho(\tau) \cdot (\tau - \tau_0)$$

• $c_{\text{sLPM}} = 0.085 \text{ GeV}$

ASW-BDMPS

- $P(\Delta E; R, \omega_c) = p_0 \delta(\Delta E) + p(\Delta E; R, w_c)$
- We compute the integrals $h_1(\mathbf{r}, \psi)$ and $h_2(\mathbf{r}, \psi)$:

$$h_n \equiv \int_0^\infty (\tau - \tau_0)^n \, \hat{q}(\tau) \, d\tau \quad n = 0, 1$$

with
$$\hat{q} = c_{ASW} \cdot \rho(\tau)$$
, $\omega_c = h_1$ and $R = 2h_1^2/h_0$.
• $c_{ASW} = 2.8 \text{ GeV}$

Fits done to $R_{AA}^{\pi_0}$ data at RHIC

Rodriguez & Fries (AMU Texas A&M)

Initial Geometry and Eccentricity

Engineered events • We need a generalization of the concept of eccentricity: $\epsilon_i = \frac{\sqrt{\langle r^i \cos(i\phi) \rangle^2 + \langle r^i \sin(i\phi) \rangle^2}}{\langle r^i \rangle}$

 We also need a generalization of the flow coefficient v₂:

 $\mathbf{v}_j = \langle \cos(j(\phi - \delta_j)) \rangle$

where

$$\delta_j = \frac{1}{j} \arctan \frac{\langle \rho_T \sin(j\phi) \rangle}{\langle \rho_T \cos(j\phi) \rangle}$$

Correlations Between Eccentricity and Asymmetry

Rodriguez & Fries (AMU Texas A&M)

Azimuthal Asymmetries

10/15/2012 11 / 17

Correlations Between Eccentricity and Asymmetry

- *v_i* is a monotonous function of *ε_i*
- $v_i = 0$ for ϵ_i if $i \neq j$ except when j is a multiple integer of i.
- Multiple coefficients are expression of the symmetry of the underlying geometry.
- v_j decrease in magnitude with j.

$$\frac{1}{m}\int_{0}^{2\pi}\cos(i\phi)\ d\phi = \int_{0}^{2\pi}\cos(im\alpha)d\alpha$$

Distributions in Realistic Fluctuating Backgrounds

Again we performed a scan in v_i vs ϵ_j using realistic geometries. We obtained:

- No correlation between v_i and ε_i except for i = j = 2 in the n = 2 geometry.
- For this geometry *v*₂ is proportional to *e*₂
- There is centrality dependence, which sharpens and defines the value of the eccentricity.
- ν₁ with a value of a few percent in the most central collisions, without correlations with ε₁

Distributions of Event Plane Phases For Realistic Events I

 δ_i for i = 1, 3, 5 have no correlation with δ_2

 δ_i for i = 4, 6 are correlated with δ_2 and this correlation is centrality dependent.

• □ ▶ • □ ▶ • □ ▶

Distributions of Event Plane Phases For Realistic Events II

We are observing *some* multiple moments

- Origin is the *n* = 2 geometry
- Explanation is in the "best square" and "best hexagon"
- Perhaps a way to distinguish between v₄ coming from ε₂ and from ε₄

Transverse Momentum Dependence of Azimuthal Asymmetry Coefficients

ASW for RHIC

Rodriguez & Fries (AMU Texas A&M)

Azimuthal Asymmetries

10/15/2012 16 / 17

Conclusions

- The presence of v_n with n odd confirms the existence of initial geometries different from n = 2.
- *v_n* do not allow to distinguish between different models of energy loss.
- For the case n = 2, correlations between v₂ and ε₂ persist even when averaged over many events.
- Phases provide with a way to distinguish between same coefficients coming from different initial geometries.
- *v*₁ is surprisingly large and maybe a way to look into fluctuations in the position of hard events and initial energy deposition.