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Strong interactions under strong magnetic fields can be found in nature:
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* Effect of a magnetic background on the chiral ftransition
> Linear sigma model at finite temperature
» How to introduce the magnetic field?

* Effective theory for the chiral and deconfining transitions:
» The linear sigma model coupled to quarks and the
Polyakov loop

* Incorporating an external magnetic field

* Free energy at one loop

* Phase structure




[AIM, M. Chernodub & E.S.Fraga (2010)]

A. Degrees of freedom and approximate order parameters




B. Chiral Lagrangian and quark interaction
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Clive poieniial [E.S.Fraga & AJM, PRD78,025016 (2008);
NPA 820, 103C (2009)]

Mean field treatment with the following assumptions:

Quarks constitute a thermalized gas that acts as a thermal
bath in which the chiral fields evolve.

T=0 (vacuum: broken % symmetry; reproduces LoM and %PT)

» Quark degrees of freedom: its presence in the vacuum brings
remarkable consequences.

* Heavy o meson (M,~600 MeV), treated classically.

*SU(2), ® SU(2), is spontaneously broken in the vacuum,
with <o> = f_ , <> = 0

* h should be related fo the nonzero pion mass




The fermions provide a thermal
bath for the long wavelength
chiral fields. Infegrating over
quarks:

effective potential

[Scavenius, Mocsy, Mishustin
& Rischke (2001); ...]

(v used as mass scale)




C. Confining potential

Parameters fix demanding:

[Roe:::sner et al. (2008):
* Stefan-Boltzmann limit reached at

T -> o0

 first order transition happens at
T=T,

* the potential fits lattice data for
thermodynamical quantities
(pressure, energy density and
entropy)



The interaction with the Polyakov loop is implemented via the
field A, in the covariant derivative f

Lo =P [i)— g(o +ivsT )]
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Interaction between the mesons and the Polyakov loop only via
quarks: minimal coupling

« Crossover for both
transitions.

* With no magnetic field
the critical tfemperature
is the same.
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For simplicity we assume a magnetic field that is constant and
homogeneous:

) — (07 _By7 070

* charged mesons (new dispersion relations):

(0% +m?)¢p =0
O) — Op +1qA, On:pz+m —I—(2n—|—1)|q|

e quarks (new dispersion relations):




In the vacuum the value of the condensate increases as the magnitude of
the magnetic field is increased: Reinforcement of the chiral symmetry breaking

T=0, a = 0.103 fm, 14* —e—
T=0,a=0.103 fm, 16% —4—
T=0, a = 0.089 fm, 16* —+—
T=0.82 T, a =0.128 fm, 16°x6 —e—

: eB (GeV?)

N. Callebault and D. Dudal (2011): P. V. Buividovich, et al
Sakai-Sugimoto (AdS/CFT) (2010): lattice

eB (GeVv?)




Thermal contribution: induced breaking of Z(3)

I IJ'JfUrJ’ 'r]c 1
artects the

ya ”Jv|ojp
fields IgIB >> m,

(not: Z(3) invariant)

IThe magnefic field reintor:




Without vacuum corrections
* A barrier appears: 1°" order chiral fransition.
= T=150MeV
- Part of the system kept in the false vacuum:
some bubbles and spinodal instability,

depending on the intensity of supercooling.
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With vacuum corrections

* No barriler: crossover ftor the chiral fransition.

- System smoothly drained to the true vacuum:
no bubbles or spinodal instability.
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M. D’Elia, S. Mukherjee, F.
Sanfilippo (2010): lattice

M. Ruggieri, R. Gatto (2010-2011): NJL
and extensions

eB (GeVv?)

Skokov (2012): PQM Bali et al (2012): lattice




* Strong magnetic fields can modify the nature and the lines of the
chiral and the deconfining transitions, opening new possibilities in the
study of the phase diagram of QCD.

* Break of Z(3) reinforced by the magnetic field.

* Our approach indicates an approximately linear dependence of the
chiral condensate on the magnetic field in the vacuum.

* Vacuum contributions are shown to change drastically the structure of
the phase diagram. Including it keeps the transition a crossover, in
accordance with lattice simulations. However in this approach the
critical temperature grows with the magnitude of the magnetic field,
contradicting lattice predictions.

o still a lot to be done..










T Momentum

The interaction of the quarks with the non-trivial gauge fields gives
rise to a difference between the number of quarks left and right. In
the presence of the magnetic field it generates a current in its
direction and a charge difference between the two hemisphere
opposite to the reaction plane.




[Gell-Mann & Levy (1960); Scavenius, Mocsy, Mishustin & Rischke (2001); ...]

e Symmetry: for massless QCD, the action is invariant under SU(N;), x SU(N,);

* “Fast” degrees of freedom: quarks
“Slow" degrees of freedom: mesons

* Typical energy scale: hundred of MeV

* We choose SU(N¢=2), for simplicity: we have pions and the sigma

» SU(2) ® SU(2) spontaneously broken in the vacuum

* Also accommodates explicit breaking by massive quarks




For simplicity we assume a magnetic field that is constant and
homogeneous:

) = (0, —By, 0,0

Inserted via gauge field in the covariant derivative. For systems
containing only chiral fields:

* charged mesons (new dispersion relations):

(0% +m?)¢p =0
O) — Op +1q A, On:pz+m +(27’L—|—1)|Q|




For the quarks interacting with the gauge filed:

l: Matsubara index
n: Landau level index




