Phase diagram of strong interaction in an external magnetic field

Ana Júlia Mizher

Universidad Nacional Autónoma de México

In collaboration with Eduardo S. Fraga and Maxim Chernodub

Hot Quarks

October 2012

Motivation

Strong interactions under strong magnetic fields can be found in nature:

- Magnetars
- Early universe

- How does the QCD diagram look like including another external control parameter, the magnetic field B?
- Are there modifications in the nature of the phase transition?
- How do the chiral and deconfinement transitions react to this magnetic field?
- How is the interplay between this two transitions?

Step by step

Effect of a magnetic background on the chiral transition
 Linear sigma model at finite temperature
 How to introduce the magnetic field?

- Effective theory for the chiral and deconfining transitions:
 The linear sigma model coupled to quarks and the Polyakov loop
- Incorporating an external magnetic field
- Free energy at one loop
- Phase structure

Effective theory

[AJM, M. Chernodub & E.S.Fraga (2010)]

A. Degrees of freedom and approximate order parameters

 $\psi = \left(egin{array}{c} u \\ d \end{array}
ight)$

Chiral field: $\phi = (\sigma, \vec{\pi}), \quad \vec{\pi} = (\pi^+, \pi^0, \pi^-)$

Quark spinors:

Polyakov loop:

$$L(x) = \frac{1}{3} \operatorname{Tr} \Phi(x), \quad \Phi = \mathcal{P} \exp\left[i \int_{0}^{1/T} \mathrm{d}\tau A_4(\vec{x}, \tau)\right]$$

Chiral symmetry : $\begin{cases} \langle \sigma \rangle \neq 0 &, & \text{low } T \\ \langle \sigma \rangle = 0 &, & \text{high } T \end{cases}$

Confinement : $\begin{cases} \langle L \rangle &= 0 \ , & \text{low } T \\ \langle L \rangle &\neq 0 \ , & \text{high } T \end{cases}$

B. Chiral Lagrangian and quark interaction

$$L = \overline{\psi} \Big[i\gamma^{\mu} \partial_{\mu} - g(\sigma + i\gamma^{5} \vec{\tau} \cdot \vec{\pi}) \Big] \psi + \frac{1}{2} \Big[\partial_{\mu} \sigma \,\partial^{\mu} \sigma \, + \,\partial_{\mu} \vec{\pi} \cdot \partial^{\mu} \vec{\pi} \Big] - V \Big(\sigma, \vec{\pi} \Big)$$

Quark kinetic term Fermion-meson interaction Mesons kinetic term

$$V(\sigma,\pi) = \frac{\lambda}{4} \left(\left(\pi^2 + \sigma^2\right) - v^2 \right)^2 - h\sigma$$

Spontaneously symmetry breaking

Explicit symmetry breaking

The effective potential

[E.S.Fraga & AJM, PRD78,025016 (2008); NPA 820, 103C (2009)]

Mean field treatment with the following assumptions: Quarks constitute a thermalized gas that acts as a thermal bath in which the chiral fields evolve.

T=0 (vacuum: broken χ symmetry; reproduces LoM and χ PT)

• Quark degrees of freedom: its presence in the vacuum brings remarkable consequences.

• Heavy σ meson (M_{\sigma}~600 MeV), treated classically.

•SU(2)_L \otimes SU(2)_R is spontaneously broken in the vacuum, with <\sigma> = f_{\pi} , <\pi> = 0

• h should be related to the nonzero pion mass

The fermions provide a thermal bath for the long wavelength chiral fields. Integrating over quarks:

 $\Omega(T,\mu,\phi) = V(\phi) - \frac{T}{\nu} \ln \det \left[\frac{\left(G_E^{-1} + M(\phi) \right)}{T} \right]$

effective potential

Effective potential for the chiral field σ for different values of the temperature. For low temperature the expected value of σ is non-zero. As the temperature increases it approaches to zero restoring the chiral symmetry.

> [Scavenius, Mócsy, Mishustin & Rischke (2001); ...]

 $\xi = \sigma / v$ (

(v used as mass scale)

C. Confining potential $\frac{V_L(L,T)}{T^4} = -\frac{1}{2}a(T) L^*L + b(T) \ln \left[1 - 6 L^*L + 4 \left(L^{*3} + L^3\right) - 3 \left(L^*L\right)^2\right]$ $a(T) = a_0 + a_1 \left(\frac{T_0}{T}\right) + a_2 \left(\frac{T_0}{T}\right)^2,$ $b(T) = b_3 \left(\frac{T_0}{T}\right)^3$ $\mathcal{L}_L = -V_L(L,T)$

Parameters fix demanding: [Roessner et al. (2008): • Stefan-Boltzmann limit reached at T -> ∞

• first order transition happens at $T=T_0$

 the potential fits lattice data for thermodynamical quantities (pressure, energy density and entropy)

The interaction with the Polyakov loop is implemented via the field A_{μ} in the covariant derivative

$$\underline{\mathcal{L}_q = \bar{\psi} \left[i D - g(\sigma + i\gamma_5 \vec{\tau} \cdot \pi) \right] \psi} = \begin{bmatrix} D = \gamma^{\mu} D_{\mu}^{(q)} \\ D_{\mu}^{(q)} = \partial_{\mu} - iA_{\mu} \end{bmatrix}$$

Interaction between the mesons and the Polyakov loop only via quarks: minimal coupling

Crossover for both transitions.
With no magnetic field the critical temperature is the same.

Including an external magnetic field

[E.S.Fraga & AJM, 2008]

For simplicity we assume a magnetic field that is constant and homogeneous:

$$\vec{B} = B\hat{z}$$
 Gauge choice $A^{\mu} = (A^{\mu})$

$$A^{\mu} = (A^0, \vec{A}) = (0, -By, 0, 0)$$

• charged mesons (new dispersion relations):

$$(\partial^2 + m^2)\phi = 0$$

 $\partial_\mu \to \partial_\mu + iqA_\mu$ $p_{0n}^2 = p_z^2 + m^2 + (2n+1)|q|B$

• quarks (new dispersion relations):

uarks (new dispersion relations):

$$(i\gamma^{\mu}\partial_{\mu} - m)\psi = 0$$

 $\partial_{\mu} \rightarrow \partial_{\mu} + iqA_{\mu}$
 $p_{0n}^{2} = p_{z}^{2} + m^{2} + (2n + 1 - 2s)|q|B$
For the quarks interacting with the gauge filed:

$$D^{(q)}_{\mu} = \partial_{\mu} - iQa_{\mu} - iA_{\mu}$$

Abelian: magnetic field

Non-Abelian: Polyakov loop

Vacuum contribution: magnetic catalysis

In the vacuum the value of the condensate increases as the magnitude of the magnetic field is increased: Reinforcement of the chiral symmetry breaking

N. Callebault and D. Dudal (2011): F Sakai-Sugimoto (AdS/CFT) (

P. V. Buividovich, et al (2010): lattice

[M. D'Elia, F. Negro (2011): lattice]

[Bali et al (2012): lattice]

Thermal contribution: induced breaking of Z(3)

[A.J. Mizher, M. Chernodub & ESF (2010)]

The magnetic field drastically affects the potential for the Polyakov loop. For <u>very large</u> fields |q|B >> m_a²:

$$\Omega_q^{\text{para}} = -3 \frac{g\sigma |q|BT}{\pi^2} K_1\left(\frac{g\sigma}{T}\right) \text{Re }L$$
(not Z(3) invariant)

The magnetic field reinforces the breaking of Z(3) that occurs in the presence of fermions, forcing <L> to be real-valued!

Effective potential

(i) Chiral condensate direction:

Without vacuum corrections

- A barrier appears: 1st order chiral transition.
- Part of the system kept in the false vacuum: bubbles and spinodal instability, some depending on the intensity of supercooling.

With vacuum corrections

- No barrier: crossover for the chiral transition.
- System smoothly drained to the true vacuum: no bubbles or spinodal instability.

Phase diagrams

Without vacuum corrections

• Chiral and deconfinement (crossover) lines initially coincide, then split (3 phases).

- The deconfinement line flattens out for high enough B (does not go to zero).
- Chiral restoration becomes more and more difficult for high B.

• Chiral and deconfinement lines coincide.

- The transitions are 1st order for a critical value of B.
- Magnetic catalysis reproduced in the vacuum. [ESF & A.J. Mizher (2008)]

and extensions

M. D'Elia, S. Mukherjee, F. Sanfilippo (2010): lattice

M. Ruggieri, R. Gatto (2010-2011): NJL

Skokov (2012): PQM

Bali et al (2012): lattice

Final remarks

• <u>Strong</u> magnetic fields can modify the nature and the lines of the chiral and the deconfining transitions, opening new possibilities in the study of the phase diagram of QCD.

• Break of Z(3) reinforced by the magnetic field.

• Our approach indicates an approximately linear dependence of the chiral condensate on the magnetic field in the vacuum.

• Vacuum contributions are shown to change drastically the structure of the phase diagram. Including it keeps the transition a crossover, in accordance with lattice simulations. However in this approach the critical temperature grows with the magnitude of the magnetic field, contradicting lattice predictions.

• still a lot to be done...

Back up slides

The interaction of the quarks with the non-trivial gauge fields gives rise to a difference between the number of quarks left and right. In the presence of the magnetic field it generates a current in its direction and a charge difference between the two hemisphere opposite to the reaction plane.

Effective theory for the chiral transition (LoM)

[Gell-Mann & Levy (1960); Scavenius, Mócsy, Mishustin & Rischke (2001); ...]

Symmetry: for massless QCD, the action is invariant under $SU(N_f)_L \times SU(N_f)_R$

- "Fast" degrees of freedom: quarks
 "Slow" degrees of freedom: mesons
- Typical energy scale: hundred of MeV
- We choose SU(N_f=2), for simplicity: we have pions and the sigma
- SU(2) \otimes SU(2) spontaneously broken in the vacuum
- Also accommodates explicit breaking by massive quarks

Including an external magnetic field

For simplicity we assume a magnetic field that is constant and homogeneous:

$$\vec{B} = B\hat{z}$$
 Gauge choice $A^{\mu} = (A^0, \vec{A}) = (0, -By, 0, 0)$

[E.S.Fraga & AJM, 2008]

Inserted via gauge field in the covariant derivative. For systems containing only chiral fields:

• charged mesons (new dispersion relations):

For the quarks interacting with the gauge filed:

$$D^{(q)}_{\mu} = \partial_{\mu} - iQa_{\mu} - iA_{\mu}$$

Abelian: magnetic field

Non-Abelian: Polyakov loop

Integration length:

$$\int \frac{d^4k}{(2\pi)^4} \longrightarrow \sum_l \int \frac{d^3k}{(2\pi)^3}$$

Finite temperature

$$\int \frac{d^4k}{(2\pi)^4} \mapsto \frac{|q|B}{2\pi} \sum_{n=0}^{\infty} \int \frac{dk_0}{2\pi} \frac{dk_z}{2\pi}$$

External magnetic field

l: Matsubara index n: Landau level index

$$T\sum_{\ell} \int \frac{d^3k}{(2\pi)^3} \mapsto \frac{|q|BT}{2\pi} \sum_{\ell} \sum_{n=0}^{\infty} \int \frac{dk_z}{2\pi}$$