

Femtoscopy at High m_T in Heavy-lon Collisions with ALICE

Hans Beck for the ALICE collaboration Hot Quarks 2012

Outline

- Introduction
- Particle selection
- Results
 - Correlation functions
 - Radii

Femtoscopic QGP observables

- Extract radii of the particle emitting source
- m_T dependence of femtoscopic radii puts constraints on model parameters:
 - Time scales
 Order of phase transition
 - Temperature ...
 - Viscosity in QGP
 - Pre-flow (RHIC)
- We measure it, you fit it! :) Femtoscopy at High m_T, Hans Beck for the ALICE collaboration, Hot Quarks 2012

Investigated systems

<u>system</u>	<u>m⊤ (k</u> ⊤→0)	<u>correlation</u>		
 Standard 		quantum statistics	Coulomb	strong
 π[±]π[±] 	0.14 GeV/c ²	×	X	(x)
 High m_T 				
• K [±] K [±]	0.49 GeV/c ²	x	x	(x)
• K ⁰ _s K ⁰ _s	0.50 GeV/c ²	x		X
• PP	0.94 GeV/c ²	x	X	X
• рЛ	1.03 GeV/c ²			X

Final state interaction (FSI)

- Interaction parameters need to be known
- Model allows to extract source size

R. Lednicky and V. L. Lyuboshits, Sov. J. Nucl. Phys. **35**, 770 (1982)

Correlation functions sensitive in height and shape

Transverse mass dependence

- low m_T high m_⊤
- Expanding medium
- Region of homogeneity smaller than the full source
- Apparent source size decreases with m_T
- Probes dynamics of source

ALICE

Trigger, CentralityTrackingPIDVZERO, T0, ZDC, ITSITS, TPC, TRDTPC, TOF

• Different PID technique depending on momentum

momentum	detector	
p < 0.75 GeV/c	TPC	
$0.75 \le p < 1.0 \text{ GeV/c}$	TPC & TOF	
$1.0 \le p < 3.25 \text{ GeV/c}$	TOF	

- Upper & lower Bethe Bloch parametrized cut
- Clear separation up to p = 0.75 GeV/c
- Kaons selected similarly

p selection: TPC

Excellent TPC performance
 High purity obtained

Nearly no signal loss

Femtoscopy at High m_T, Hans Beck for the ALICE collaboration, Hot Quarks 2012

ALI-PERF-43414

 Increased purity Femtoscopy at High m_T, Hans Beck for the ALICE collaboration, Hot Quarks 2012

Feed-down into protons

- Enhances correlation signal
- Allows to determine contamination

Femtoscopy at High m_T, Hans Beck for the ALICE collaboration, Hot Quarks 2012

Kaon PID

- K⁰_s reconstructed via their charged decay
 - Identified via invariant mass

- K[±] using TPC & TOF
 - pT up to I.5 GeV/c

Results

K[±]K[±]

Bowler-Sinyukov fit for Coulomb treatment^{1,2}

 $C(q_{inv}) = 1 - \lambda + \lambda K(q_{inv}) \left(1 + \exp\left(-R_{inv}^2 q_{inv}^2\right)\right)$

$K^0_s K^0_s$

Attractive strong FSI and QS fitted

R. Lednicky and V. L. Lyuboshits, Sov. J. Nucl. Phys. 35, 770 (1982)

Very good agreement with charged kaons

• Differential in centrality and k_T

Strong centrality dependence observed

Radii at high m_T

Approximate m_T scaling

Kaons and protons double m_T reach

Femtoscopy at High m_T, Hans Beck for the ALICE collaboration, Hot Quarks 2012

Outlook

- p∧ & p̄∧ correlations reached highest m_T at SPS and RHIC
- Studies ongoing in ALICE

Femtoscopy at High m_T, Hans Beck for the ALICE collaboration, Hot Quarks 2012

Outlook

- $p\Lambda \& \overline{p}\overline{\Lambda}$ correlations reached highest m_T at SPS and RHIC
- Studies ongoing in ALICE

Femtoscopy at High m_T, Hans Beck for the ALICE collaboration, Hot Quarks 2012

Summary

- ALICE provides an excellent environment
 for high purity and high statistics Femtoscopy
- Radii for various systems at high m_T have been extracted

Backup

p Selection:TOF

Protons well separated

Proton purity above 99% everywhere

A selection

- Reconstructed via charged decay
- Analysis cuts optimize significance
 - Identified via invariant mass \$100 × 10³ Pb-Pb, √s_{NN} = 2.76 TeV 0 - 10% central lyl < 0.2 3000 $1.0 \le p_{-} < 2.0 \text{ GeV/c}$ 2500 phase space bin 2000 with most yield & 1500 high track density 1000 0/10/2012 500 1.09 1.12 1.13 1.11 1.14 1.15 1.16 $m_{inv}(p\pi)$ (GeV/c²)

Femtoscopy at High m_T, Hans Beck for the ALICE collaboration, Hot Quarks 2012

π-

P

Two-track resolution

- 2 close tracks get merged to | track
- I track splits in 2 tracks
- Close pairs have similar momentum
- Not present in mixed events
- Would affect correlation function
- Cut on non-uniformities at small distances

Femtoscopy at High mT, Hans ALI-PERF-2827

mT scaling of radii

 Hydrodynamics + resonances calculation (THERMINATOR2) with parameters for PbPb collisions at 2.76 ATeV, clearly predicts m_T scaling in LCMS (Longitudinally Co-Moving System). But R_{inv} is calculated in PRF (Pair Rest Frame)!

mT scaling of radii

• One can get an approximate 1D radius in LCMS with: $R_{LCMS} = \sqrt{(R_{out}^2 + R_{side}^2 + R_{long}^2)/3}$

which should also scale

But in PRF, we have:

$$R_{out}^{PRF} \sim \gamma R_{out}^{LCMS}$$

A.Kisiel

- The increase of R_{out} in PRF has two effects:
 - The overall radius of the system increases
 - The source becomes non-gaussian
- The interplay of the two effects can be accounted for with an approximate formula relating 1D sizes in LCMS and PRF

$$R_{PRF} \stackrel{\text{\tiny def}}{=} R_{inv} = \sqrt{\left(R_{out}^2 \sqrt{\gamma} + R_{side}^2 + R_{long}^2\right)/3}$$

mT scaling of radii

Therefore one can recover the R_{LCMS} from R_{inv} with a simple kinematic scaling:

$$R_{LCMS} = R_{inv} \left(\frac{\sqrt{\gamma} + 2}{3} \right)^{-1/2}$$

 Please note that this is pure kinematics (not model dependent) and approximate (~10%, worse as gamma increases), but R_{inv} is an approximation in itself.

Kaon agreement

PP FSI

Femtoscopy at High m_T, Hans Beck for the ALICE collaboration, Hot Quarks 2012

pp correlation function

