# Low-mass dielectron production in pp and Pb–Pb collisions in ALICE



### Markus K. Köhler for the ALICE collaboration

Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung, Germany

Hot Quarks, Copamarina, Puerto Rico

October 19th, 2012





H-QM Helmholtz Research School Quark Matter Studies

## Dielectrons



#### advantage

- ► mean free path  $\lambda \propto 1/\alpha^2$  $\rightarrow \lambda_{em}/\lambda_{strong} \sim 10^4$
- negligible final state interaction

#### but ...

► low branching ratios, e.g.

$$\phi \rightarrow K^+ K^- (\mathsf{BR}:0.5)$$
  
 $\phi \rightarrow ee (\mathsf{BR}:3 \times 10^{-4})$ 

## Expected hadronic dielectron sources

 $\begin{array}{rrrr} \mbox{low masses} & \rightarrow & \mbox{low-mass vector mesons/Dalitz decays} \\ \mbox{intermediate masses} & \rightarrow & \mbox{semi-leptonic heavy flavour decays} \\ \mbox{high masses} & \rightarrow & \mbox{heavy quarkonia/hard processes} \end{array}$ 



A. Drees, Nucl. Phys. A830 (2009), 435

# Physics motivation for low-mass dielectron measurement

#### proton-proton collision

- transverse momentum spectra of light vector mesons
- heavy flavour production mechanisms
- direct photons (test of pQCD)
- baseline measurement for heavy-ion collisions

#### Pb-Pb collision

investigation of medium modifications/properties

# A Large Ion Collider Experiment



coverage of central barrel mass resolution

$$\begin{array}{ll} 0 < \varphi < 2\pi & |\eta| < 0.9 \\ \hline \Delta m/m \sim 1\% \end{array}$$

Markus K. Köhler

65Ì

## **Track selection**

 $\rightarrow$  challenge of electron identification

involved detectors

- Time Projection Chamber (pion rejection)
- Time-Of-Flight (kaon and proton rejection)





651

# **Electron Purity**



- $\blacktriangleright$  in total  $\sim$  1% misidentified electrons
- negligible amount to be subtracted by combinatorial background

## **Photon conversions**

Two independent ways to identify photon candidates

- 1. displaced vertex
- dielectron pair plane orientation with respect to magnetic field



▶ contamination of photon conversions a few percent in the low-mass region ( $m_{ee} \lesssim 0.1 \ {\rm GeV}/c^2$ )

## **Dielectron pair analysis**

 $\blacktriangleright$  consideration of all pair combinations of  $e^+e^-$ 

 $\rightarrow$  combinatorial background  $\underbrace{N_{+-}}_{\text{measured}} = S_{+-} + N_{+-}^{\text{CombBkg}}$ 

- Available methods
  - $\rightarrow$  track rotation
  - $\rightarrow\,$  mixed event technique
  - $\rightarrow\,$  same-event like-sign method

$$N_{+-}^{\mathsf{CombBkg}} = \underbrace{2 \times \sqrt{N_{++}N_{--}}}_{\mathsf{Like-sign}} * \overbrace{R_{Acc}}^{\mathsf{from mixed events}}$$

► So far, the focus is on the like-sign distribution

q

## Invariant mass spectra



- most unlike-sign pairs orginate from uncorrelated electrons
- raw signal is extracted by the subtraction of the combinatorial background
- different sources contribute to different mass ranges

G 5

# Hadronic cocktail simulation

- transverse momentum distributions of  $\pi^0$  as baseline
- ► other particle contributions are scaled correspondingly by model or measurements  $(\eta, \phi \text{ and } J/\psi)$
- ► so far, the DD̄ contribution based on PYTHIA kinematics (with measured cross section by ALICE)

#### Measured input spectra

- $\pi^0, \eta$ : Phys.Lett.B717:162-172,2012
- ▶ *ϕ*: arXiv:1208.5717
- ▶ σ<sub>c̄c</sub>: arXiv:1205.4007
- ► *J*/*ψ*: Phys.Lett.B704:442-455,2011

# **Efficiency correction**

- efficiency correction of detector effects
- Monte Carlo simulations are used for corrections
- ▶ the efficiency is extracted on track level  $(p_T, \eta, \varphi)$
- correction factor on pair level is about 10-15%

# Systematic uncertainty

#### Different sources

- ► dominating source is the combinatorial background  $\rightarrow \frac{dS}{S} = \frac{dB}{B} \times \left(\frac{S}{B}\right)^{-1}$
- ► track cuts
- ► efficiency
- normalization



65Ì

## Comparison to hadronic sources



cocktail and data are in agreement

GSİ

## **Outlook for Pb-Pb**



- ► Very small S/B ratio (here p<sup>e</sup><sub>T</sub> > 0.4 GeV/c)
- detailed study of background systematics ongoing

Markus K. Köhler

# Summary and Outlook

#### Summary

- $\blacktriangleright$  First dielectron continuum measurement in ALICE presented for pp collisions at  $\sqrt{s}=7~{\rm TeV}$
- $\blacktriangleright$  Invariant mass measurement agrees to hadronic cocktail calculations in the range  $0 < m_{ee} < 3.3~{\rm GeV}/c^2$
- Analysis in Pb–Pb needs very good knowledge of combinatorial background

#### Outlook

- physics to be investigated from dielectron measurements in pp and Pb–Pb collisions
  - $\rightarrow\,$  virtual photons, in-medium modifications  $\ldots$
- $\blacktriangleright$  outstanding possibilities for low- $p_{\rm t}$  physics with ALICE at LHC

# BackUp



GSİ