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Abstract.
Interest in the development of the theory of fluctuating hydrodynamics is growing.

Early efforts suggested that viscous diffusion broadens the rapidity dependence of transverse
momentum correlations. That work stimulated an experimental analysis by STAR. We study the
hydrodynamic evolution using second order causal viscous hydrodynamics including Langevin
noise. We obtain a deterministic evolution equation for the transverse momentum density
correlation function. We use the latest theoretical equations of state and transport coefficients
to compute the STAR observables. The results are in excellent accord with the measured
broadening. In addition, we predict features of the distribution that can distinguish 2nd and
1st order diffusion.

1. Introduction
Relativistic Heavy Ion Collider (RHIC) experiments have provided evidence of formation of
deconfined state of quark and gluons, or quark-gluon plasma (QGP). It was shown that QGP
behaves like a most perfect liquid known. The main reason behind this conclusion was the
successful use of relativistic ideal hydrodynamic model to describe the flow data. The quantity
used to indicate the perfectness of QGP is the ratio of viscosity to entropy density η/s. Of
course, for perfect fluid it is zero. Current consensus is that for QGP it is in the range
between the conjectured lower bound (the “KSS” bound) of 1/4π and ∼ 0.3 (in units where
~ = kB = c = 1). This range is much smaller than the value (= 0.7) of superfluid liquid
helium. In Ref.[1] Gavin and Abdel-Aziz propose an independent method for estimating η/s
using rapidity distribution of transverse momentum correlations. They calculate the difference
in the widths of these distributions between peripheral and central collisions, using first order
diffusion of pt fluctuations. They estimate η/s in the range 0.08 - 0.3, which is the same as that
obtained from the flow data. Recently STAR has measured [2] the widths of correlations and pt
covariance profile in rapidity. Here we show that causally constrained diffusion equation with
temperature dependent η/s is required to explain the data. We start with a brief discussion of
diffusion of transverse momentum fluctuation in Section 2, before applying the concepts to two-
particle pt correlations in Section 3. We then present the results and discuss them in Section4.

2. Diffusion of Transverse Flow Fluctuations
Equations of dissipative relativistic hydrodynamics are derived from the basic principles of
conservations of charges and of energy-momentum. Depending on the order of gradients included



in the dissipative part of the energy momentum tensor, relativistic hydrodynamics is said to
be of first or second order. The first order is the relativistic version of the famous Navier-
Stokes theory and the second order is the well known Israel-Stewart theory. If we take small
fluctuations on quantities (like the flow uµ) over equilibrium values, we can see that transverse
modes decouple from the longitudinal modes. The longitudinal modes are propagating sound
modes while the transverse modes are solely the diffusing shear modes. As we are more interested
in shear viscosity we focus on the transverse modes. Note that shear viscosity is the most
important mode of dissipation in QGP. Starting with relativistic hydrodynamic equations and
constitutive relation for shear tensor (see [3], for example, for such equations and relations) and
then linearizing, one arrives at [4] diffusion equations for a transverse momentum current:
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These two equations follow from the first order and second order theories, respectively. Here
T0y ≈ (ε0 + p0)δuy. δuy is a transverse fluctuation in flow, ε0 and p0 are energy density and
pressure at equilibrium. Note that the diffusion coefficient ν = η/(ε0 + p0) = η/Ts contains the
ratio η/s and thus encapsulates the information on viscosity. In [5] Hirano and Gyulassy have put
together the latest information on η: a combination of results from perturbative QCD, kinetic
theory and N = 4 Super Yang-Mills (SYM) at infinite coupling strengths, in the respectively
applicable temperature ranges. This information has been used here for shear viscosity. For
entropy density we have looked at values from lattice QCD calculations, specifically s95p-v1
from [6, 7].

We make use of Bjorken boost invariant coordinates (τ, x, y, η), where τ and η are proper
time and space-time rapidity: τ =

√
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The first equation of (1) is a regular diffusion equation. There is a well-known problem with the
first order theory: this diffusion equation violates causality and is not suitable for relativistic
particles or fluid cells. It has been shown that second order theory gives relativistically consistent
diffusion equation. Equation (1), which follows from second order theory, does not violate
causality. The relaxation time τπ in the second order diffusion equation restores causality. For
details on causality and diffusion see [3], [8] and the references therein.

3. Two-Particle Transverse Momentum Correlations
Correlation function of two-particle transverse momentum current is r = 〈T 0y
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2 ≡ T 0y(x2) are momentum currents of particle pairs at points x1

and x2, respectively. Considering small perturbations about the average, T 0y = 〈T 0y〉+δT 0y and
treating them as stochastic quantities, we can write r = 〈δT 0y
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The bars over the letters represents the same average - the average over the ensembles of events.
The last term becomes important in stochastic methods. This term vanishes in the absence of
noise. Using the second of (1) and the expression for r and manipulating the terms we can [4]
subtract away the noise term to obtain
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1 Note that the same letter η is used for shear viscosity and for the longitudinal space-time rapidity here. The
meaning should be clear from the context of its use.



We can get similar equation for the first order case [1]. Here ∆r = r − reql.
If we use Bjorken boost invariance, (2) we can obtain this equation in terms of τ and η:
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Clearly, η1 and η2 are space-time rapidities for particle 1 and particle 2. This equation and its
first order version [1] (i.e., (1) without the first term) are the equations we numerically solve.
The diffusion coefficient and the relaxation time are both temperature (and time) dependent.

4. Results and Discussion
The main observables we compute from the numerical solutions (∆r) are the width
σ of the correlation function and an important observable C given by [1] C =
〈N〉−2

∫
∆rg(x1,x2)dx1dx2 = 〈N〉−2〈

∑
i 6=j ptiptj〉 − 〈pt〉2, where i labels particles from each

event. It can be seen that C connects ∆r to experimentally measurable pt-covariance. The
relaxation time is τπ = β η

Ts = βν. Suggested value of β are 5-6 [9] and 6.32 [10]. Here
we have used β = 6. Initial (thermalization) time is taken to be τ0 = 1 fm/c. Initial ∆r
is taken to be a gaussian in relative rapidity ∆η, with initial width σ0 = 0.54, making it
consistent with experimental data for the most peripheral collisions. We have assumed a fixed
temperature freezout, at 150 MeV. Glauber model has been used to connect impact parameters
and multiplicity of the collisions. The freezeout proper time is assumed as τF − τ0 ∝ (R−R0)2,
with R the rms participant radius. Freezeout time for most central collisions is taken to be 9
fm/c. The computed σ and C are compared with the values measured recently by STAR [2].

Figure 1 shows widths versus centralities computed using both first and second order theory
with two different equations of state - EOS I and EOS II. EOS I is the one which contains
the entropy density calculated from lattice QCD. EOS II uses the standard entropy density,
summarized in [5]. We see that second order calculations agree very well with the experimental
data. We also note that the choice of EOS makes a very small difference. However, there is
significant difference between the first and second order diffusion, except for a few most central
cases. The deviation of the first order results from data relates to how the relaxation time
compares with the evolution time [4]. This clearly shows that one needs causally constrained
hydrodynamic evolutions to better explain the experimental data. Figure.1 also compares results
with NeXSPHeRIO calculations [11]. NeXSPHeRIO uses non-viscous (ideal) hydrodynamics
in evolution of initial correlations. It reproduces most qualitative features of the two-particle
correlations. It however does not reproduce the broadening of the rapidity width with increasing
centrality, as one cane see in Fig. 1. We attribute that to the absence of viscosity in its
hydrodynamic. Other explanations involving collective initial state behavior are also possible.

Figure 2 shows observable C vs ∆η for various centralities from our numerical calculations
and the values measured by STAR [2]. The STAR measured values have error bars in the
offsets (ridge), which we have not shown here. The plots show good agreement of the numerical
results with the experiments. The single point at ∆η = 0 in the most central case here has
been attributed to the track merging and is just a detector artifact. One important observation
we make here is the flattening of the peak (and to some extent double humps) in C. The
reason for the double hump (or rather the flattened peak) is a second order diffusion effect.
We note that the second order diffusion equation has propagating wave part as well. Thus
there is competing wave and diffusion effects, depending on the size of τπ and ν. Wavefronts
propagate in opposite directions and diffusion fills in the space in between. This can be seen
more effectively in coordinate space (not shown here). In rapidity space, width saturates since
the effective diffusion coefficient ν/τ2 in (3) decreases rapidly with time. The first order diffusion
obviously does not show such humps and flattening - there are no propagating waves. STAR
data for other centralities [12] show the humps exactly at the same centralities. Shapes show



fair agreement with the calculations. Here we have restricted ourselves with the published data
only for the three centralities shown in Fig2. Finally, we just want to mention that the order
of entropy production equations does not make practical difference in our results. Note that we
have relatively large β in τπ = βη/Ts.

It would be interesting to measure the observable C from the p-A [13] and Pb-Pb [14] collisions
data from LHC. In the pA case, it would be interesting to see whether there is a broadening with
respect to pp. Experiments have identified a ridge in pA [13]. If hydrodynamics is applicable in
the pA system, then viscous diffusion would broaden the rapidity width of C.
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Figure 1. Second order, first order, with both
EOS [4] and NeXSPHeRIO [11] calculations of
width vs STAR [2] measurements.
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Figure 2. C vs ∆η. Comparison with
STAR data at different centralities. [2].
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