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Abstract. In this talk I consider the deconfining phase transition at nonzero temperature in a
SU(N) gauge theory, using a matrix model. I present some results including the position of the
deconfining critical endpoint, where the first order transition for deconfinement is washed out
by the presence of massive, dynamical quarks, and properites of the phase transition in the limit
of large N . I show that the model is soluble at infinite N , and exhibits a Gross-Witten-Wadia
transition.

1. The matrix model
In my talk, I addressed the properties of the thermodynamics of pure SU(N) gauge theory in
the so-called semi-QGP region for temperatures about or a few times that for the deconfining
phase transition Td.

A commonly accepted order parameter for the deconfinement phase transition is the Wilson
line defined by

L(~x) = P exp

(
ig

∫ β

0
A0(~x, τ)dτ

)
. (1)

An effective theory is constructed by expanding about a constant background field for the
vector potential,

Aij0 =
2πT

g
qi δ

ij , (2)

where the field A0 was diagonalized by a proper gauge transformation and where i, j = 1 · · ·N
and the eigenvalues qi are subject to the SU(N) constraint

∑N
i qi = 0. In the matrix model qi are

the fundamental variables characterizing the transition. It is assumed that after integrating out
the other components of gluon field Ai, that we obtain an effective potential for qi (Ṽ = V/N2)
[1, 2, 3, 4, 5, 6]:

Ṽeff (q) = −d1(T )Ṽ1(q) + d2(T )Ṽ2(q), (3)

Ṽn(q) =

N∑
i,j=1

|qi − qj |n (1− |qi − qj |)n . (4)
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Figure 1. The left panel: The phase diagram for the deconfining phase transition in the
matrix model, assuming Td ∼ 270 GeV. The right panel: The phase diagram of the deconfining
phase transition for the matrix model without/with bag constant (bold/thin solid line) and the
Polyakov loop models with the polynomial (dashed line) and logarithmic (dotted line) potentials.
The lines correspond to the second order deconfining phase transition.

The potential includes both perturbative (Ṽ2) and non-perturbative (Ṽ1) contributions. The
temperature-dependent functions d1 and d2 are given by

d1(T ) =
2π

15
c1 T

2 T 2
d , d2(T ) =

2π

3

(
T 4 − c2T 2T 2

d

)
. (5)

The constants are fixed by comparison to the simulations of SU(3) on the lattice [4]. They are
not important for further discussion.

2. Critical point of the deconfinement phase transition
When dynamical quarks are added one needs to compute the one-loop perturbative analogous
contribution which they make to the q-dependent potential. This has been computed in Ref.
[1]. For quarks of mass m, the one loop potential is given by

ln det(γµ∂µ + qδµ4 + im) = 2 ln det
[(
∂0 + 2πTq

)2
− ~∂ 2 +m2

]
, (6)

As fermions, in the Matsubara formalism, the frequencies are odd multiples of πT . The
straightforward calculations a single flavor of massive quark lead to the contribution to the
potential

V qk
pert(q) =

2m2 T 2

π2

∞∑
n=1

(−1)n

n2
K2

(nm
T

) N∑
i=1

cos(2πnqi) . (7)

For the pure glue theory, by a Z(3) rotation we can assume that the Polyakov loop is real. With
dynamical quarks, this remains true if all of the quark masses are real and the quark chemical
potential vanishes. In the left panel of Fig. (1) the results are presented for the matrix model.
The critical temperature changes very little from the pure gauge theory,

Tde = .995Td . (8)

The results are compared for different models in the right panel of Fig. (1). For the logarithmic
Polyakov loop model [7], the masses are light, mde ∼ 1 GeV. The temperature for the deconfining



critical endpoint is significantly less than for the pure glue theory,

Tde = 0.90 Td . (9)

A polynomial Polyakov loop model [8, 9] gives a very large mass, mde ∼ 3.5 GeV. The critical
temperature is very close to the pure glue theory, Tde ∼ 0.996 Td.

The sensitivity of Tde and mde to the models’ assumptions may allow to single out the model
with the most appropriate description of lattice SU(3) simulations. The detailed description
can be found in Ref. [5].

3. Large N limit
In the infinite N limit it is convenient to introduce a continuous variable x = i

N . Labeling the
eigenvalue qi → q(x), one gets

ρ(q) = lim
N→∞

1

N

N∑
i

δ(q − qi) =

∫ 1

0
dxδ[q − q(x)] =

dx

dq
. (10)

At finite N , the identities

N∑
i

1 = N,
N∑
i

qi = 0 (11)

become, at infinite N , ∫
dqρ(q) = 1,

∫
dqρ(q)q = 0. (12)

The potential is proportional to N2,

Ṽn(q) = N2Vn(q) = N2

∫
dx dy |q(x)− q(y)|n (1− |q(x)− q(y)|)n

= N2

∫
dq dq′ ρ(q) ρ(q′) |q − q′|n

(
1− |q − q′|

)n
. (13)

This representation transforms the potential into a polynomial in q.
The minimum of Eq. (13) was found in Ref. [6]:

ρ(q) = 1 + b cos dq, −q0 < q < q0, (14a)

d = 2

√
3d2
d1

. (14b)

cot(dq0) =
d

3

(
1

2
− q0

)
− 1

d (1/2− q0)
, (14c)

b2 =
d4

9

(
1

2
− q0

)4

+
d2

3

(
1

2
− q0

)2

+ 1. (14d)

For T > Td, d > 2π and q0 <
1
2 . The eigenvalues do not span the full range between −1

2 and
1
2 . The density is discontinuous at the end points ρ(±q0) > 0. For T = T+

d , q0 = 1
2 and d = 2π,

the density is continuous for all values of q in [−1/2, 1/2]. In particular it vanishes at the end
points ρ(±q0) = 0. For T < Td, the theory is in confined phase, with a uniform distribution of
eigenvalues, Eq. (14a) with q0 = 1

2 and b = 0.



The Polyakov loop jumps at the transition from Lc = 0 to Ld = 0.5. Assuming that
δd ∼ Td − T , one obtains that as T → T+

d ,

L(T )− 1

2
∼ (Td − T )β , β = 2/5 . (15)

Thus, near the transition L(T ) exhibits a power like behavior which is characteristic of a
second order phase transition, although L(T+

d ) 6= 0. Therefore, the system exhibits a Gross-
Witten-Wadia transition. That is, it exhibits aspects of both first order and second order phase
transitions; thus it can be termed “critical first order” [10].

Other critical exponents besides β can be calculated, as was demonstrated in Ref. [6], they
satisfy the usual Griffths scaling relation,

2− α = β(1 + δ) . (16)

The critical first order transition described above is clearly special to infinite N . At finite N ,
one expects a first order phase transition, and a smoothing of the critical behavior. This leads
to a natural question: how large must N be to see such putative critical behavior? The present
model can be solved numerically for ∞ > N ≥ 4. In Ref.[6] the behavior of the numerical
solution for the specific heat, divided by N2−1, was shown for different values of N . To observe
the divergence in the specific heat, moderate values of N do not suffice. Instead, it is necessary
to go to rather large values, N ≥ 40. However, the recent results of Ref. [11] imply that to
detect a manifestation of the Gross-Witten-Wadia phase transitions, it is enough to calculate
the interface tension up to N = 10.

The present matrix model suggests that very near Td, a novel transition may arise at large
N .
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