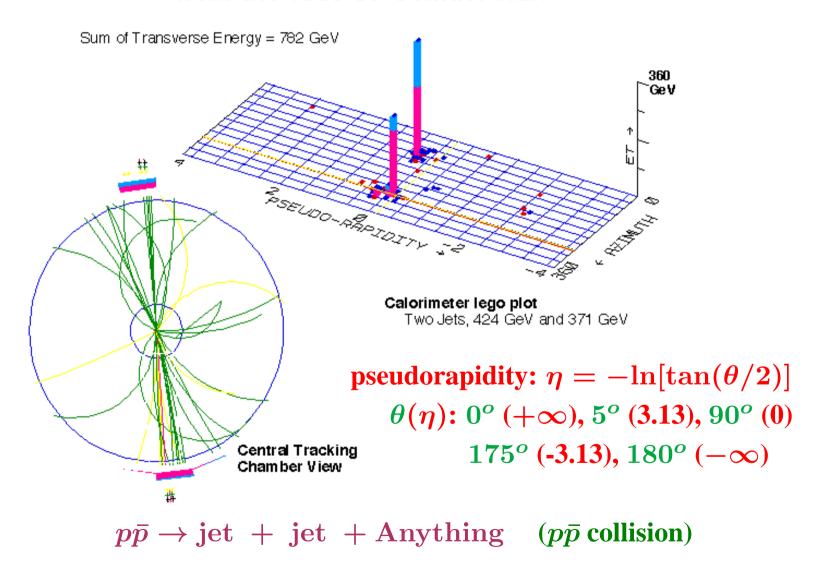
July 20th, 2012

QCD and jets: experiment

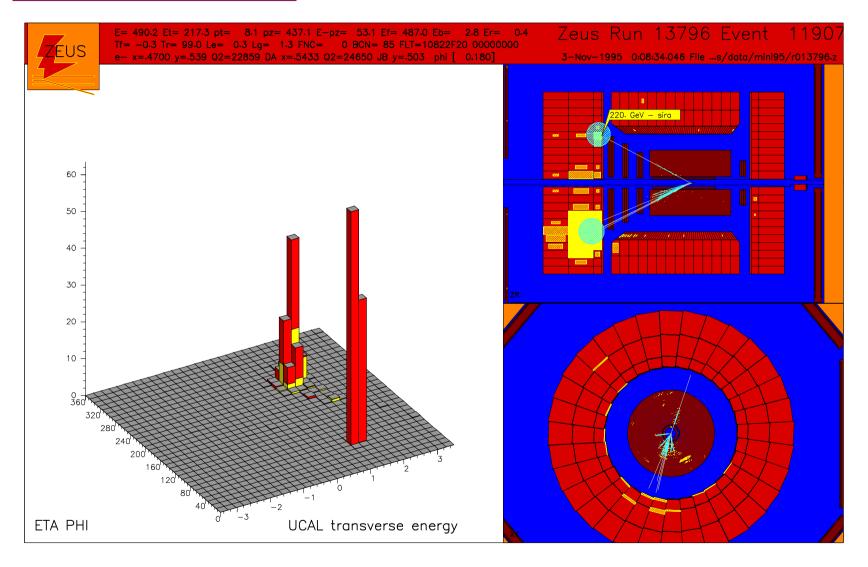
Juan Terrón (Universidad Autónoma de Madrid, Spain)

Outline

- → Jets and Jet Algorithms
- \rightarrow Jets in e^+e^- collisions
- → Structure Functions
- → Jets in Neutral Current DIS
- → Jet Substructure in NC DIS
- → Jets in Photoproduction

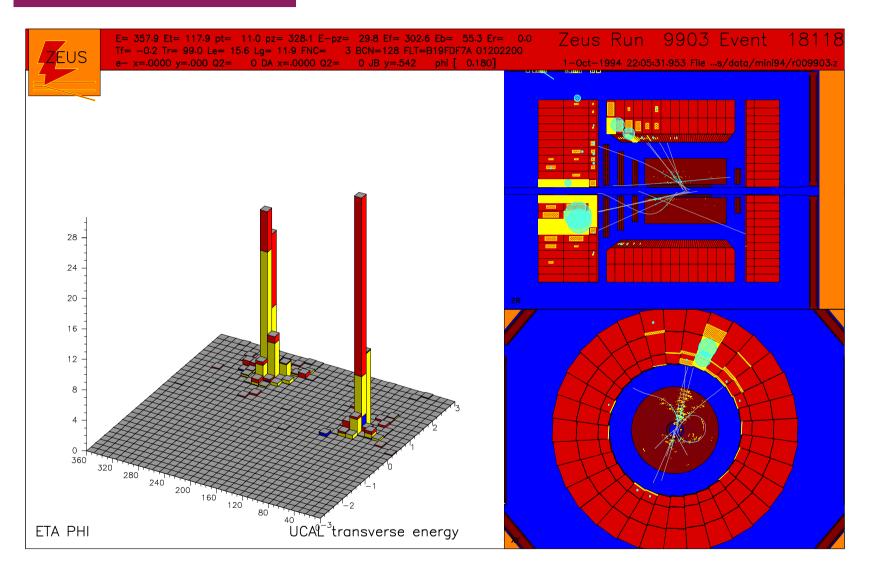


What is a jet?



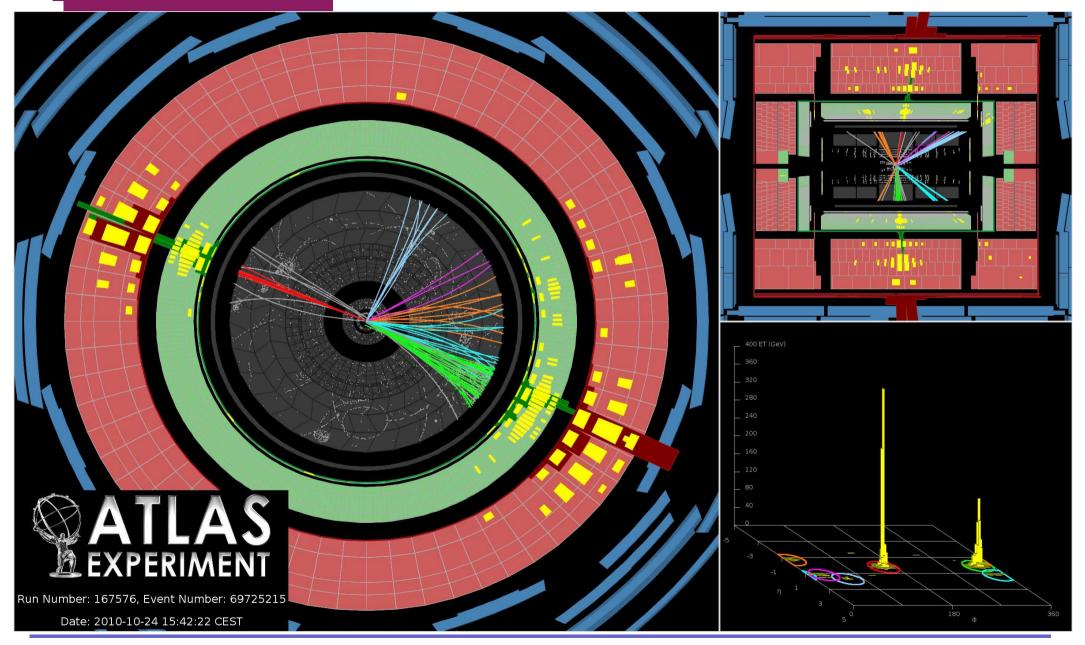
What is a jet (II)?

CDF: Highest Transverse Energy Event from the 1988-89 Collider Run

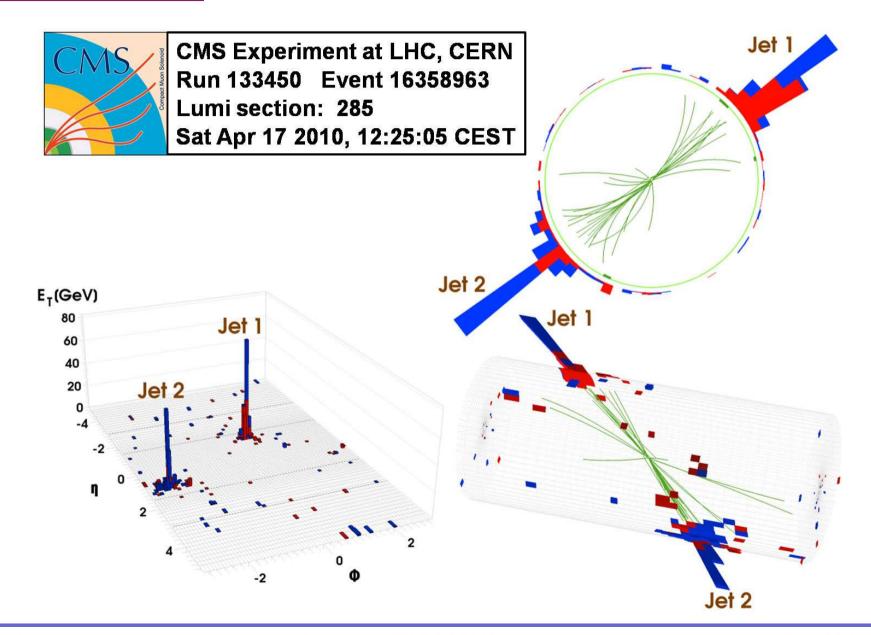


What is a jet (III)?

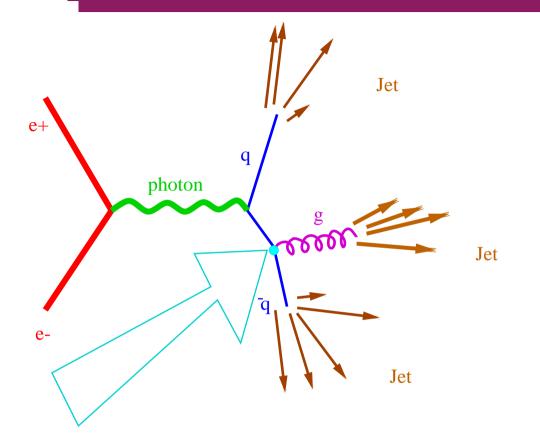
 $ep \rightarrow e + \text{jet} + \text{Anything}$ (NC DIS)

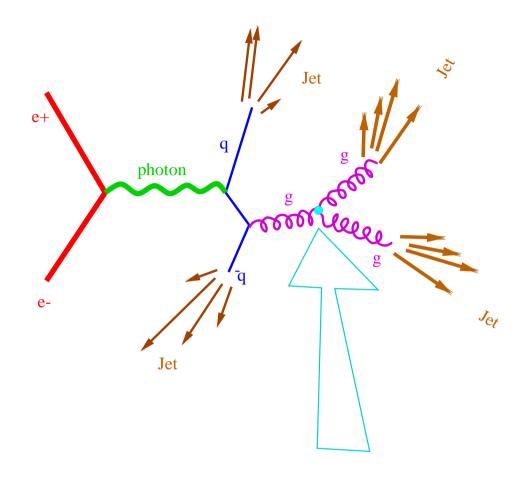

What is a jet (IV)?

 $ep \rightarrow jet + jet + Anything$ (photoproduction)

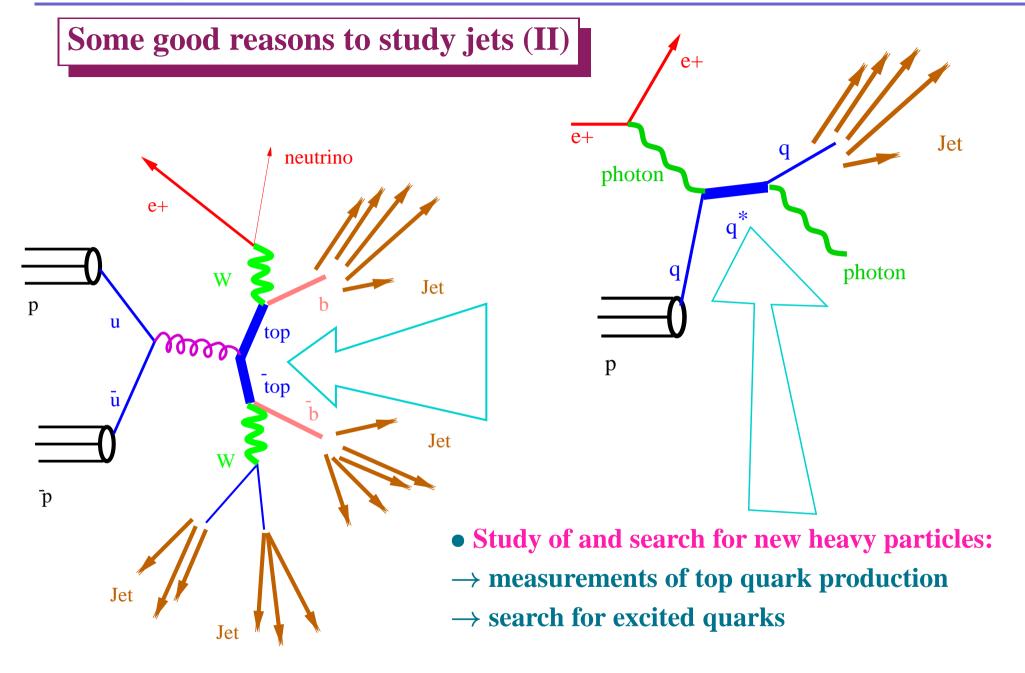

What is a jet (V)?

 $pp \rightarrow \text{jet} + \text{jet} + \text{Anything}$




What is a jet (VI)?

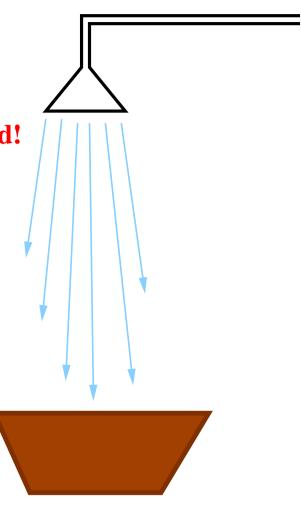
$$pp \rightarrow \text{jet} + \text{jet} + \text{Anything}$$



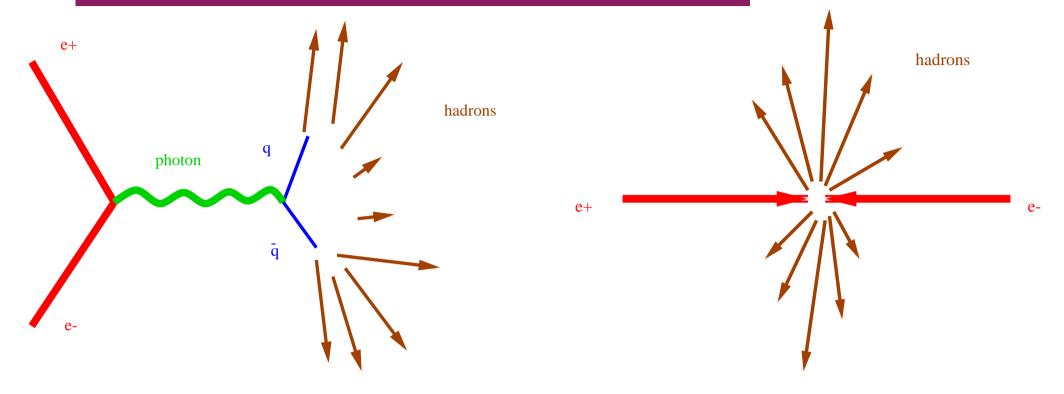
Some good reasons to study jets

- Studies of the strong interactions:
- \rightarrow measurements of the strong coupling constant (α_S)
- \rightarrow colour dynamics (e.g. the self-coupling of the gluon)

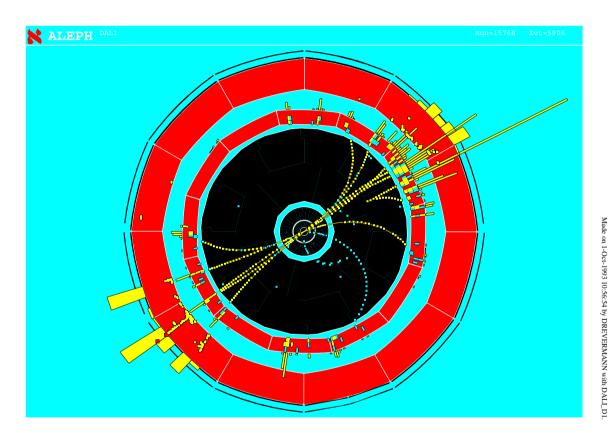
Some good reasons to study jets (III)


Jet Algorithms

How to find jets?

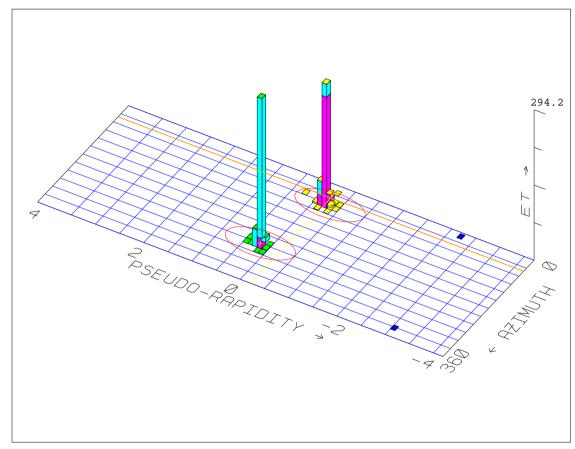

- To reconstruct the final-state quarks and gluons
 - → Something more sophisticated than a bucket is needed!

- \rightarrow MEASURABLE!
- \rightarrow CALCULABLE!
- \rightarrow ACCURATE!
- Jet algorithm:
 - \rightarrow Reference frame
 - \rightarrow Variables of the hadron
 - → Combining hadrons


Variables for Jet Search in e^+e^- annihilations

- \bullet e^+e^- annihilations in the centre-of-mass system
- Invariance under rotations \Rightarrow Energies and angles
- \Rightarrow Input to the jet algorithm: E_i , θ_i and ϕ_i for every hadron i
- \Rightarrow "distance" between hadrons i and j: their angular separation θ_{ij}

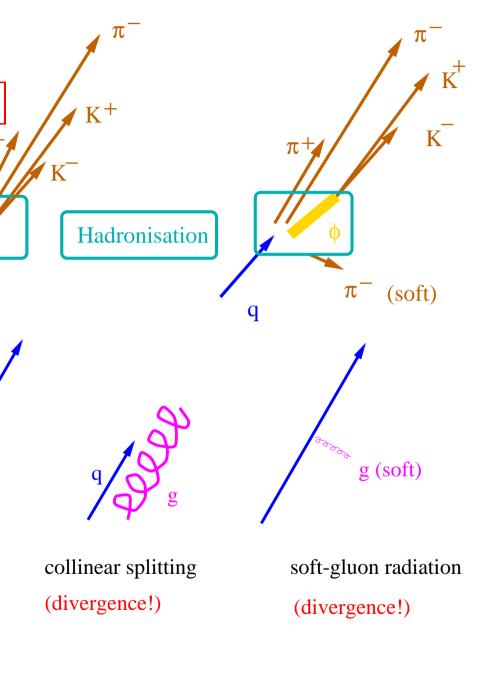
Combining the hadrons to build up jets: cluster algorithms


- Hadrons are combined iteratively according to their "distance"
- Usually a binary decision
- Two-step procedure:
 - \rightarrow decision about combining hadrons i and j based on d_{ij} \rightarrow momentum of the combined pseudo-particle (ij) (recombination procedure)

- ullet They have a long and successful history in e^+e^- annihilations
- The JADE algorithm has been the standard
 - ightarrow distance definition: $d_{ij}^2 = 2E_iE_j(1-\cos\theta_{ij})$
 - \rightarrow recombination procedure: $p_{(ij)} \equiv p_i + p_j$

Combining the hadrons to build up jets: cone algorithms

- Maximizing the total transverse energy of the hadrons within a cone of fixed size
- Three-step procedure:
 - → constructing the seeds(starting positions for the cone)
 - → moving the cone around until a stable position is found
 - → dealing with overlapping cones (to merge or not to merge)



- ullet They have been applied mainly to $par{p}$ collisions
- The iterative cone algorithm has been the standard
 - \rightarrow distance definition: $d_{iJ} \equiv \sqrt{(\eta_i \eta_J)^2 + (\phi_i \phi_J)^2}$
 - ightarrow cone axis: $\eta_J \equiv rac{1}{E_T} \sum_i E_{T,i} \cdot \eta_i, \quad \phi_J \equiv rac{1}{E_T} \sum_i E_{T,i} \cdot \phi_i, \quad E_T = \sum_i E_{t,i}$

Requirements on a jet algorithm

MEASURABLE, CALCULABLE, ACCURATE

- → Simple to use in experimental analyses and theoretical calculations
- → Insensitive to the presence of soft particles or particle (strong) decays
 - → infrared and collinear safe, so that it can be calculated order-by-order in perturbative QCD
- → Close correspondence with the final state quarks and gluons
 - \rightarrow small hadronisation corrections
- → Suppression of beam remnant jet contributions

soft-gluon radiation

(divergence!)

Fulfilling the requirements

- The JADE algorithm is infrared and collinear safe
- → <u>First situation</u>: two particles (partons)with equal and opposite momenta

$$d_{12}^2 = 4E_1(\bar{q})E_2(q) = s_{cm}$$

For $d_{cut}^2 < s_{cm} \Rightarrow$ Two jets

 \rightarrow <u>Second situation</u>: three particles (partons) \bar{q} the two collinear partons will be combined

$$d_{2'3'}^2 = 2E_2'(q)E_3'(g)(1-\cos 0) = 0 !!$$

 $p_{(2'3')}=p_2'+p_3'=p_2$!! (it wouldn't be the case if the p were added quadratically)

$$d_{1(2'3')}^2 = 4E_1(\bar{q})E_{(2'3')}(qg) = s_{cm} \text{ and for } d_{cut}^2 < s_{cm} \Rightarrow \text{Two jets}$$

ightarrow Third situation: the soft gluon will be combined with the closest (in angle) quark

e.g.
$$d_{2'3'}^2 = 2E_2'(q)E_3'(g)(1-\cos\theta_{2'3'}) < 2E_1(\bar{q})E_3'(g)(1-\cos\theta_{13'})$$

 $p_{(2'3')} = p_2' + p_3' = p_2 !!$

$$d_{1(2'3')}^2 = 4E_1(\bar{q})E_{(2'3')}(qg) = s_{cm} \text{ and for } d_{cut}^2 < s_{cm} \Rightarrow \text{Two jets}$$

The final result is the same in each configuration!

soft-gluon radiation (divergence!)

g (soft)

collinear splitting

(divergence!)

Fulfilling the requirements (II)

• The cone algorithm is infrared and collinear safe at NLO

Each of them defines a cone \Rightarrow Two jets

 \rightarrow Second situation: three particles (partons)

the two collinear partons will lie in the same cone

 \Rightarrow Two jets

 \Rightarrow Two jets

The jet axes and transverse energies will differ from the the values found in the 1st or 2nd situation by a quantity that $\to 0$ as $E(g) \to 0$!

• The final result is the same in each configuration!

Jets in e^+e^- collisions

Observation of jets in e^+e^- collisions

- First evidence for jets arising from quarks in $e^+e^- o q\bar{q}$ events was obtained at the SPEAR e^+e^- collider in 1975
- Since jets could not be discerned simply by looking at the pattern of outgoing tracks, a method to define the jet axis was devised: the direction in which the sum of the squares of the momenta transverse to the axis was minimal:

ullet $p_{\perp i}$: momentum of the ith particle perpendicular to the sphericity axis

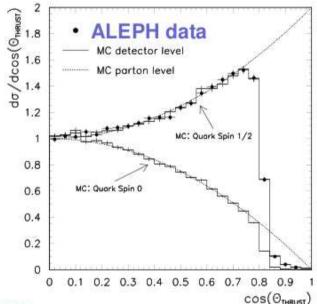
 QCD predicts that as the cms energy increases, the events should become more jet-like so the sphericity should decrease

 Comparison to isotropic phasespace (PS) and jet models:

- \rightarrow both models are consistent with the data for $\sqrt{s}=3.0~{\rm GeV}$
- ightarrow for $\sqrt{s}=6.2$ and 7.4 GeV, the data are peaked toward low S and have significantly lower mean S than the PS model and agree with the jet model

 $\sqrt{s} = 3.0 \text{ GeV}$ $\sqrt{s} = 6.2 \text{ GeV}$ $\sqrt{s} = 7.4 \text{ GeV}$

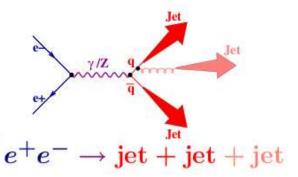
Observation of jets in e^+e^- collisions


• The quark spin can also be inferred from the angular distribution of the thrust axis in hadronic Z decays \rightarrow the angular distribution has the form

$$rac{d\sigma}{d\cos heta_{
m th}} \propto 1 + lpha\cos^2 heta_{
m th}$$

where $\theta_{\rm th}$: polar angle of thrust axis

 \rightarrow spin-1/2 quarks: $\alpha = +1$

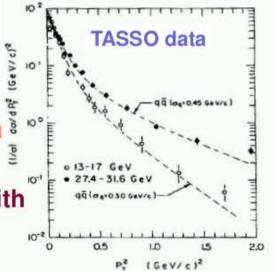

ightarrow spin-0 quarks: $\alpha = -1$

- Comparison to the predictions
 - → the spin-0 curve is clearly incompatible the data
 - \rightarrow the spin-1/2 curve is in excellent agreement with the measurements
 - \Rightarrow Confirmation that quarks are fermions with spin 1/2

Observation of gluon jets in e^+e^- collisions

- In e^+e^- , gluons first appear as the $\mathcal{O}(\alpha_s)$ correction to the $e^+e^- \rightarrow q\bar{q}$ process
- First observation of three-jet events in $e^+e^- \rightarrow q\bar{q}g$ at the PETRA e^+e^- collider in 1979 \rightarrow direct evidence for the existence of gluons by looking for deviations from the quark-parton model predictions

ullet The quark-parton model for the process $e^+e^ightarrow qar q$ predicts back-to-back jets of hadrons with typical transverse momentum of $\sim 0.3~\text{GeV}$


Jet

- In QCD,
 - → gluons will be radiated from the quarks and so the jets will no longer be back-to-back
 - \rightarrow the p_T distribution of the final-state hadrons will broaden with increasing energy
 - \rightarrow the $q\bar{q}g$ state must be coplanar since the momenta should sum 0 by momentum conservation
 - → the final-state hadrons will have small transverse momentum wrt the plane and large transverse momentum in the plane
 - → if the gluon is radiated with a large transverse

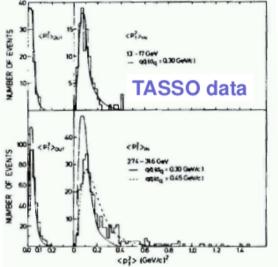
JADE

Observation of gluon jets in e^+e^- collisions

- Two methods were used to determine the jet axis from the final-state hadrons:
 - ightarrow minimising $\sum p_T^2$ (sphericity axis)
 - ightarrow maximising $\sum |\hat{p}_{||}|$ (thrust axis)
- Normalised transverse momentum distribution $\sigma^{-1}d\sigma/dp_T^2$ evaluated wrt the sphericity axis as a function of p_T^2 at $\sqrt{s}=13-17$ and 24.7-31.6 GeV:
 - \rightarrow the data at both energies are in reasonable agreement for $p_T^2 < 0.2~{\rm GeV^2}$
 - \rightarrow the high-energy data are well above the low energy data for $p_T^2>0.2~{\rm GeV^2}$
- The low-energy data have been fitted for $p_T^2 < 1.0~{\rm GeV^2}$ with the jet model: the value of the parameter σ_q (it determines the width of the p_T distribution) obtained was $0.30~{\rm GeV}$
- ullet For the high-energy data, $\sigma_q=0.45$ GeV in contradiction with the quark-parton model which assumes the quark to fragment into hadrons with an energy-independent p_T distribution
- ullet QCD predicts the p_T to increase with the energy due to gluon bremsstrahlung

Observation of gluon jets in e^+e^- collisions

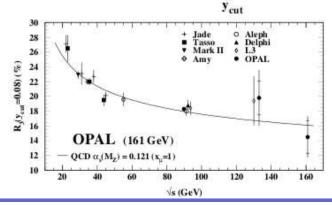
$$\langle p_T^2
angle_{
m out}=rac{1}{N}\sum_{j=1}^N (ec p_j\cdotec n_1)^2$$
 (momentum component normal to the event plane)


 $\langle p_T^2
angle_{
m in} = rac{1}{N} \sum_{i=1}^N (ec{p}_j \cdot ec{n}_2)^2$ (momentum component in the event plane perpendicular to the jet axis)

where \vec{n}_3 : direction of sphericity axis, \vec{n}_1 : direction which maximises $\sum p_T^2$, \vec{n}_2 : direction orthogonal to \vec{n}_1 and \vec{n}_3

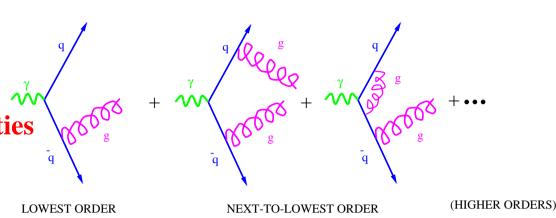
- $ightarrow \vec{n}_2 \vec{n}_3$: event plane
- ightarrow the data show only little increase in $\langle p_T^2
 angle_{
 m out}$ between the low-energy and the high-energy data
- ightarrow the distribution of $\langle p_T^2 \rangle_{
 m in}$ becomes much wider at high energies and a long tail is observed

Comparison to the jet-model predictions:


- ightarrow hadrons resulting from pure $q \bar q$ events will be on average distributed uniformly around the jet axis
- o fair agreement with the qar q model is found both for $\langle p_T^2
 angle_{
 m in}$ and $\langle p_T^2
 angle_{
 m out}$ for the low-energy data
- o at high energy, there is a fair agreement between $\langle p_T^2
 angle_{
 m out}$ and the qar q model with $\sigma_q=0.3$ GeV
- o the long tail in $\langle p_T^2
 angle_{
 m in}$ is not reproduced by the model o this discrepancy cannot be removed by increasing σ_q
- \Rightarrow the data include a number of planar events not reproduced by the $qar{q}$ model
 - \rightarrow evidence for $q\bar{q}g$ events

Jet rates in e^+e^- collisions

- The topology of hadronic events in e^+e^- collisions is modified by the effects of gluon radiation, giving rise to events which differ from the collimated two-jet topology coming from the fragmentation of $q\bar{q}$ events
- Since the amount of gluon radiation is directly proportional to α_s , the study of the topology of hadronic decays in e^+e^- provides a determination of $\alpha_s(M_Z)$
- The strategy consists of finding variables which characterize the "three-jetness" of the events \rightarrow the variables have to be infrared and collinear safe to be able to perform reliable calculations: jet rates as a function of the resolution parameter $y_{\rm cut}$
- Comparison to Monte Carlo predictions:
 - → the predictions show in general a good agreement with the data
- The three-jet rate (R_3) at $y_{\rm cut}=0.08$ as a function of \sqrt{s} shows the running of α_s directly

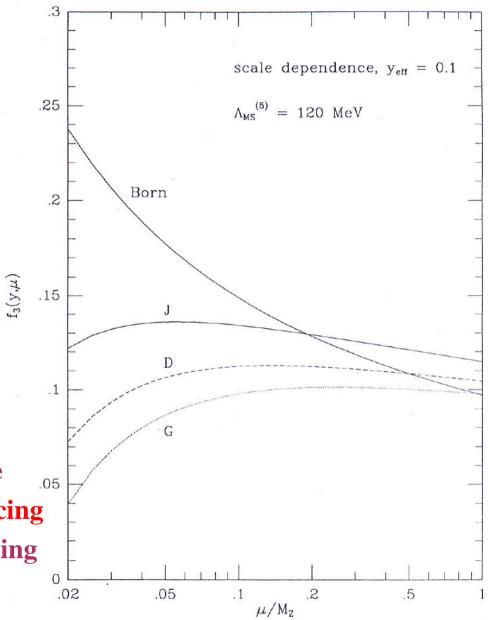


Theoretical Uncertainties

Being collinear and infrared safe
 does NOT mean small theoretical uncertainties

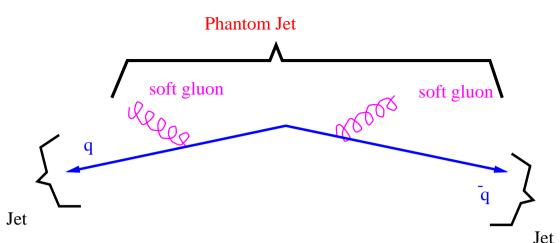
ullet Perturbative QCD calculations are performed to a certain order in $lpha_S$

- \rightarrow the size of higher-order contributions constrains the accuracy with which (e.g.) α_S can be experimentally determined
- The size of the higher-order contributions DEPENDS on the jet algorithm
- How can higher-order effects be estimated without computing them?
 - \rightarrow by investigating the renormalisation-scale dependence (μ_R)


$$A = A_1 \cdot \alpha_S(\mu_R) + A_2 \cdot \alpha_S^2(\mu_R) + ...$$
(higher orders)

At all orders $m{A}$ does NOT depend on μ_R

 \Rightarrow The size of the "..." is such that it cancels the μ_R variation of the first two terms


Theoretical Uncertainties (II)

- NLO calculations for three-jet production in $e^+e^-\colon \to \text{variation with } \mu_R \text{ to asses}$ the size of higher-order contributions
- ightarrow Performance of various jet algorithms: variation of the observable f_3 over the range $0.1 < \mu_R/M_Z < 1.0$
 - JADE algorithm: 15%
 - Durham algorithm: 8%
 - Geneva algorithm: 3%
- The Durham and Geneva jet algorithms were specifically designed for the purpose of reducing the higher-order contributions upon identifying the limitations of the JADE algorithm

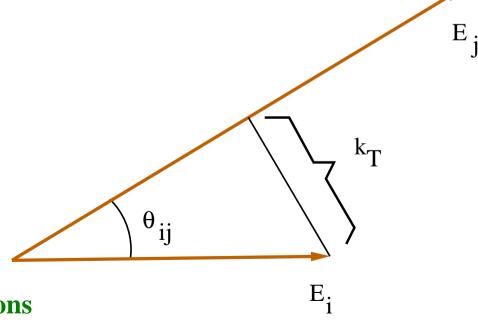
Improving the jet algorithm

- The limitation of the JADE algorithm:
 - \rightarrow soft gluons are copiously radiated
 - → but soft gluons far apart can be combined into and a "phantom" jet

• This peculiar behaviour arises from the definition of "distance" in the JADE algorithm:

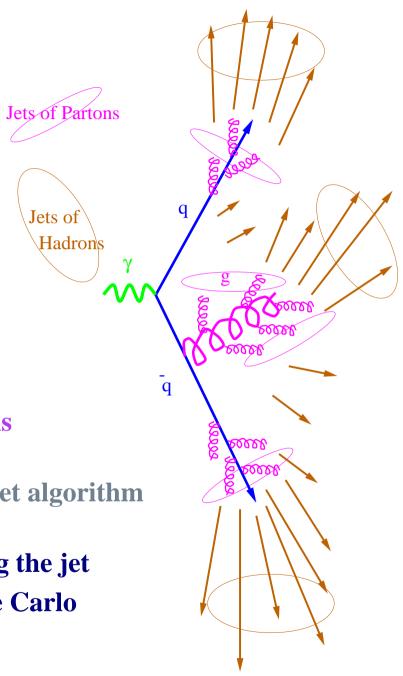
$$\left| \frac{d_{ij}^2}{d_{ij}^2} = 2E_i E_j (1 - \cos \theta_{ij}) \right| \Rightarrow$$
 two soft gluons can be very close " $d_{gg} \ll d_{gq}$ "

• An improved definition of the distance:


$$d_{ij}^2 = 2 \cdot min(E_i^2, E_j^2) \cdot (1 - \cos \theta_{ij})$$

which amounts to replacing the invariant mass

ightarrow by the minimum relative k_T of the pair

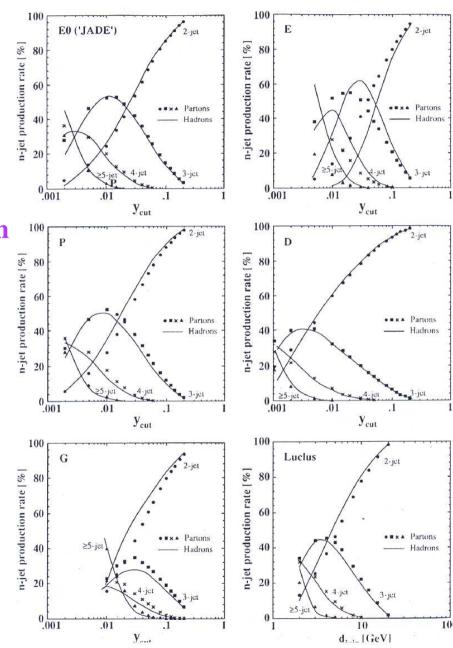

\Rightarrow Durham (or k_T) algorithm

→ it also allows the resummation of contributions from multiple-soft-gluon emissions

Hadronisation Effects

- Being collinear and infrared safe
 does NOT mean small hadronisation uncertainties
- Parton-to-Hadron (hadronisation) effects are non-perturbative and are estimated with Monte Carlo simulations that include
 - \rightarrow q and g radiation in the parton-shower approach
 - \rightarrow fragmentation of the final-state partons into hadrons
- The size of the hadronisation effects DEPENDS on the jet algorithm
- They are estimated by comparing the results of applying the jet algorithm to the parton and hadron levels of the Monte Carlo simulated events

Hadronisation Effects (II)


- Jet rates in e^+e^- annihilations as functions of the resolution parameter y_{cut}
- Comparison of hadron and parton level calculations using Monte Carlo simulations
- The size of the hadronisation effects depends upon
 - \rightarrow the distance definition
 - \rightarrow the recombination procedure
- The hadronisation effects are LARGEST for
 - \rightarrow the JADE algorithm with the E scheme

$$(p_{ij} = p_i + p_j)$$

- → the Geneva algorithm
- The hadronisation effects are SMALLEST for
 - \rightarrow the JADE algorithm with the E0 scheme

$$(E_{ij} = E_i + E_j, \ \ ec{p}_{ij} = rac{E_{ij}}{|ec{p}_i + ec{p}_j|} (ec{p}_i + ec{p}_j|))$$

 \rightarrow the Durham algorithm

Importance of the details of the jet algorithms

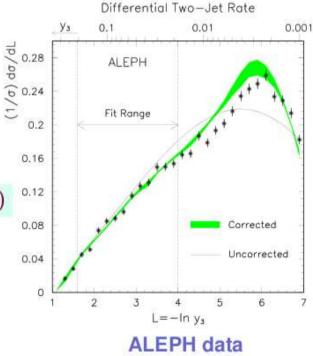
- The "details" of a jet algorithm are RELEVANT for
 - \rightarrow precise comparisons between DATA and THEORY to make accurate determinations of the fundamental parameters (e.g. $\alpha_S(M_Z)$)
 - \rightarrow precise identification and reconstruction of new heavy particles
- The decision on which algorithm to choose must be based on the size of the uncertainties
 - → higher-order contributions
 - \rightarrow hadronisation corrections
 - \rightarrow hadronisation uncertainties
 - \rightarrow experimental uncertainties

Determination of $\alpha_s(M_Z)$ in e^+e^- collisions

• The QCD prediction for the differential two-jet rate as a function of the two-jet resolution parameter y_3 is given by

$$rac{1}{\sigma}rac{d\sigma}{dy_3} = rac{lpha_s(\mu)}{2\pi}A(y_3) + \left(rac{lpha_s(\mu)}{2\pi}
ight)^2 \cdot \left[B(y_3) + 2\pi b_0 \ln\left(rac{\mu^2}{s}
ight) \cdot A(y_3)
ight]$$

where $A(y_3)$ and $B(y_3)$ contain the full information of the second order matrix


elements, μ : renormalisation scale

 Since the predictions correspond to a partonic final state with at most four partons → need to apply hadronisation corrections

ullet A value of $lpha_s(M_Z)$ of

$$\alpha_s(M_Z) = 0.121 \pm 0.002 \text{ (stat) } \pm 0.003 \text{ (exp.) } \pm 0.007 \text{ (th.)}$$

was obtained by fitting the measured differential two-jet rate distribution using the second order QCD prediction corrected for hadronisation effects

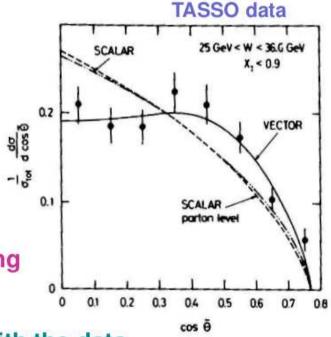
Determination of the spin of the gluon in e^+e^- collisions

- A study of three-jet events in e^+e^- collisions gives insight into the dynamics of perturbative QCD

 three-jet events arise from hard non-collinear gluon radiation
- For massless jets, there are only four independent variables: two angular variables and two of the energy fractions, $x_i=2E_i/\sqrt{s}$ since $x_1+x_2+x_3=2$ by energy conservation $(x_1 > x_2 > x_3)$
- The LO cross section for the process $e^+e^- o qar q g$ with vector gluon (spin 1) is

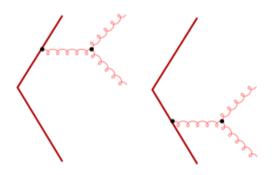
$$rac{1}{\sigma_0}rac{d^2\sigma^V}{dx_1dx_2} = rac{2lpha_s}{3\pi}\left[rac{x_1^2+x_2^2}{(1-x_1)(1-x_2)} + ext{permut}
ight]$$

and for scalar gluon (spin 0),


$$rac{1}{\sigma_0}rac{d^2\sigma^S}{dx_1dx_2}=rac{2 ilde{lpha}_s}{3\pi}\left[rac{x_3^2}{(1-x_1)(1-x_2)}+ ext{permut}
ight]$$

where $\tilde{\alpha}_s$: effective coupling in a theory with scalar gluons

 The spin of the gluon can be determined by comparing the data and predictions for the variable



- $|\cos \tilde{\theta}| = \frac{x_2 x_3}{x_1}$ (Ellis-Karliner angle) \rightarrow the scalar gluon model is in clear disagreement with the data
- → the vector gluon model provides a very good description of the data

Triple-gluon vertex

- QCD is based on the SU(3) non-abelian group which induces the self-coupling of the gauge bosons whereas QED is based on the abelian U(1) group (no self-coupling)
- ightarrow Due to the presence of the gluon self-coupling, the effects of the triple-gluon vertex should be observed
- → The events should contain at least four jets in the final state
- Events with at least four jets are needed since the diagrams that contain the triple-gluon vertex are

The diagrams

also contribute to the four-jet cross section, but they are present in abelian theories as well

Four-jet events in e^+e^- : triple-gluon vertex

- ullet Four-jet events have been observed at the e^+e^- collider LEP
- → QCD prediction confirmed by data!
- ullet The four-jet cross sections for $e^+e^- o qar q gg$ and $e^+e^- o qar q qar q$ can be expressed as

$$rac{1}{\sigma_0}d\sigma_{qar{q}gg}(y_{ij}) = \left(rac{lpha_s C_F}{\pi}
ight)^2 \left[A(y_{ij}) + \left(1 - rac{1}{2}rac{C_A}{C_F}
ight)B(y_{ij}) + rac{C_A}{C_F}C(y_{ij})
ight]dY_{ij}$$

$$rac{1}{\sigma_0}d\sigma_{m{qar{q}qar{q}}}(y_{ij}) = \left(rac{lpha_s C_F}{\pi}
ight)^2 \left[N_F rac{T_F}{C_F} D(y_{ij}) + \left(1 - rac{1}{2}rac{C_A}{C_F}
ight) E(y_{ij})
ight] dY_{ij}$$

where

- $y_{ij} = (p_i + p_j)^{\mu} (p_i + p_j)_{\mu}/s$ is the normalised two-body invariant mass and i, j run over the four partons
- $ightarrow C_A,\, C_F$ and T_F are the color factors
- $ightarrow N_F$ is the number of active quark flavors
- $\rightarrow A, ..., E$ are group-independent kinematic functions
- $ightarrow \sigma_0$ is the Born cross section for the process $e^+e^-
 ightarrow qar q$
- $\rightarrow dY_{ij}$ is the product of the differentials of any five of the six y_{ij} variables

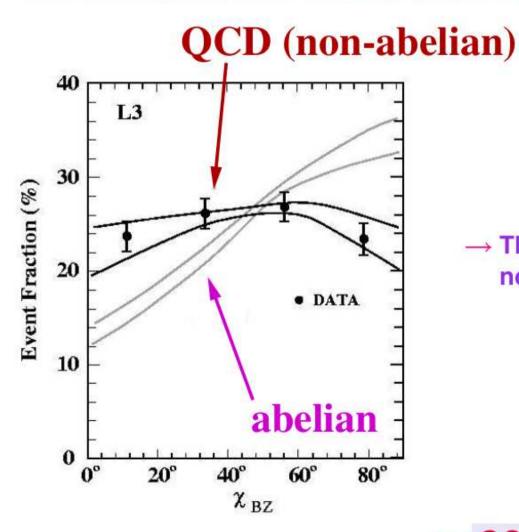
Jet 2

Four-jet events in e^+e^- : triple-gluon vertex

- ullet Variables have been devised to highlight the non- abelian character of QCD in contrast to abelian theories, eg the SU(3) group of QCD could be replaced by the abelian $[U(1)]^3$ group
- These variables are
 - \rightarrow Bengtsson-Zerwas angle χ_{BZ} , the angle between the planes determined by the two lowest and the two highest energy jets:

$$\cos \chi_{BZ} = \left| \frac{(\vec{p}_1 \times \vec{p}_2) \cdot (\vec{p}_3 \times \vec{p}_4)}{|\vec{p}_1 \times \vec{p}_2| |\vec{p}_3 \times \vec{p}_4|} \right|$$

 \rightarrow Nachtmann-Reiter angle θ_{NR}^* , the angle between the momentum vector differences of jets 1,2 and jets 3,4:

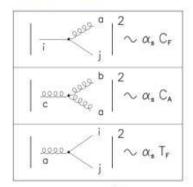

$$|\cos \theta_{NR}^*| = \left| \frac{(\vec{p}_1 - \vec{p}_2) \cdot (\vec{p}_3 - \vec{p}_4)}{|\vec{p}_1 - \vec{p}_2| |\vec{p}_3 - \vec{p}_4|} \right|$$

 $\rightarrow \alpha_{34}$, the angle between the two lowest energy jets:

$$\cos lpha_{34} = rac{ec{p}_3 \cdot ec{p}_4}{|ec{p}_3| \ |ec{p}_4|}$$

Do the data favour an abelian or a non-abelian theory?

These variables have been measured in four-jet events at LEP, eg


→ The data clearly favour a theory with non-abelian character: QCD

→ QCD prediction confirmed by data!

Four-jet events in e^+e^- : color factors

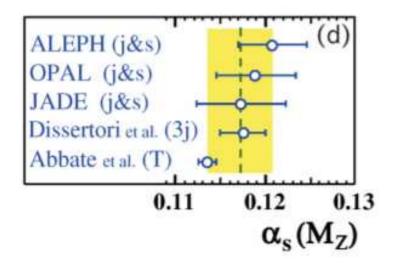
- ullet A simultaneous measurement of the ratios C_A/C_F and T_F/C_F at $e^+e^$ colliders is possible through the study of angular correlations in four-jet events: the values are extracted from a fit of the theory to the data distributions on the angular variables
- → The results obtained are

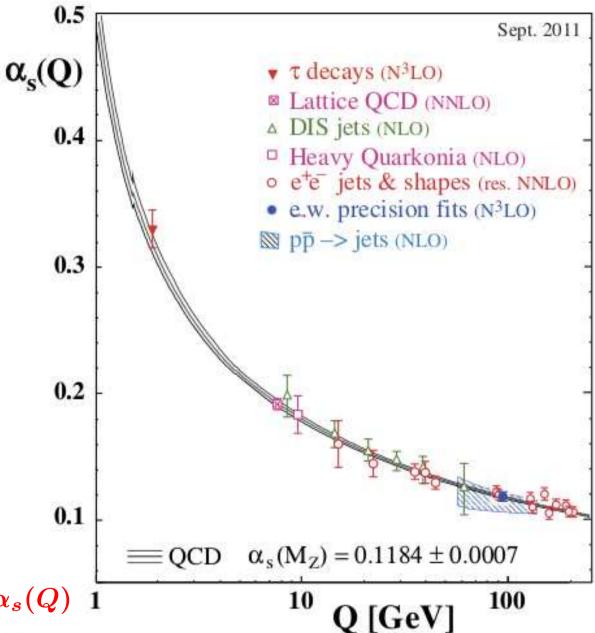

$$C_A/C_F = 2.11 \pm 0.16 \; ({
m stat}) \pm 0.28 \; ({
m syst})$$

 $T_F/C_F = 0.40 \pm 0.11 \; ({
m stat}) \pm 0.14 \; ({
m syst})$

$$ig|_{[a]{c}}^{2} ig|_{[a]{c}}^{2} ig|_{[a]{$$

$$T_F = 1/2$$

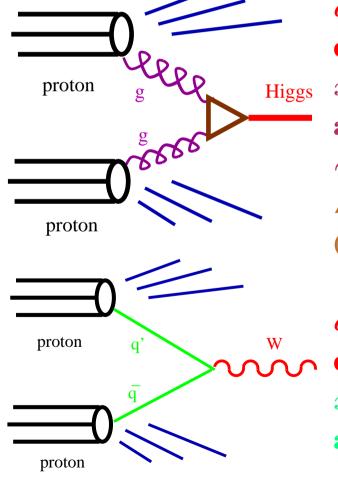

- The $U(1)^3$ and SO(3) theories are clearly excluded by the measurements
- The results are in agreement with the predictions of the SU(3) theory (QCD)



QCD prediction confirmed by data!

Measurements of α_s

Determinations of $\alpha_s(M_Z)$ in e^+e^- using measurements of event shapes and jet rates for which NNLO calculations are available


Determinations of $\alpha_s(Q)$

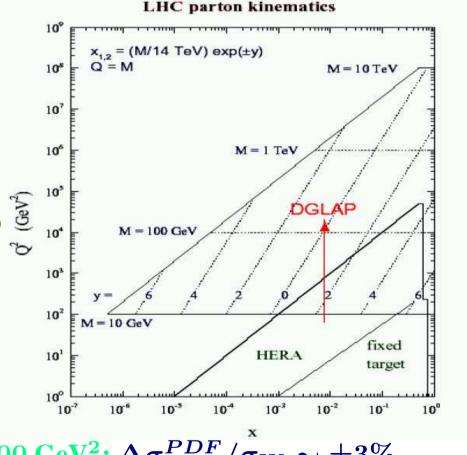
 \rightarrow test of the running

Structure Functions

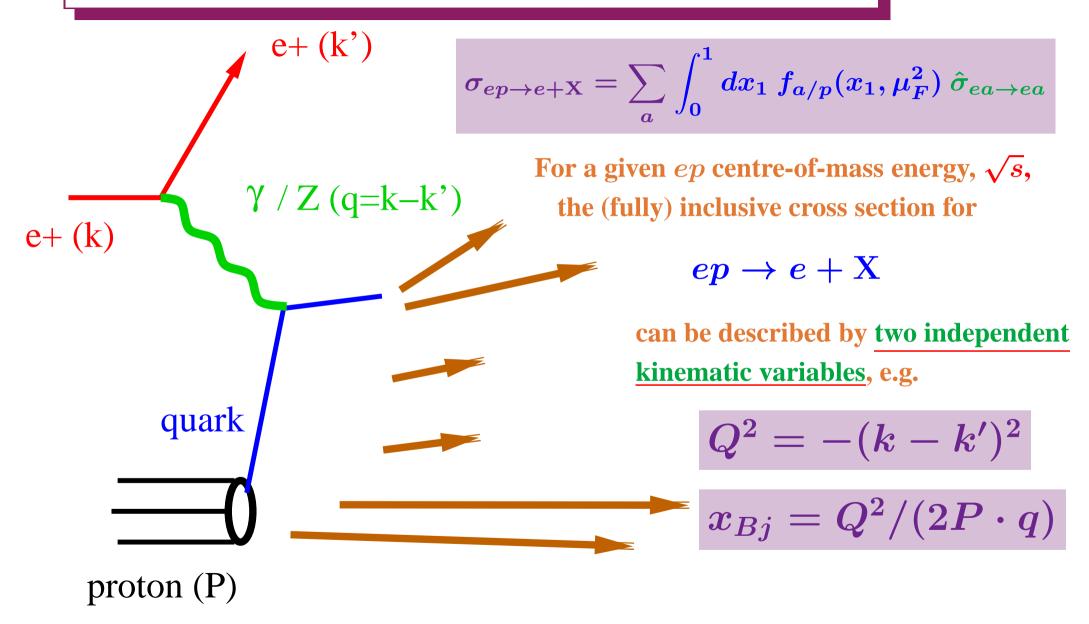
Universality (and usefulness) of Proton PDFs

$$\sigma_{pp o H(W,Z,...)+{
m X}} = \sum_{a,b} \int_0^1 dx_1 \ f_{a/p}(x_1,\mu_F^2) \int_0^1 dx_2 \ f_{b/p}(x_2,\mu_F^2) \ \hat{\sigma}_{ab o H(W,Z,...)}$$

 σ_H sensitive to gluon distribution at

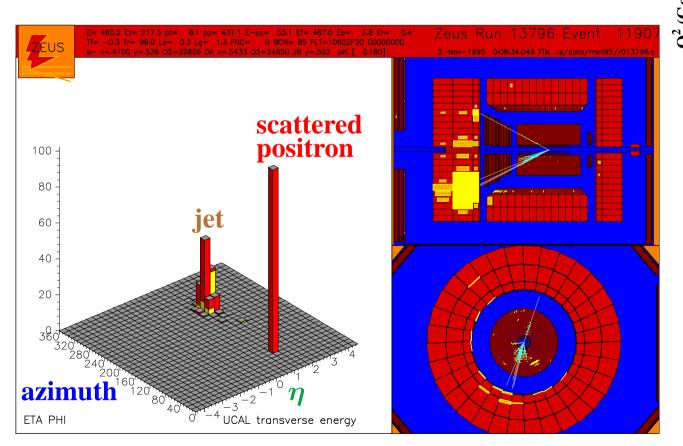

$$x\sim rac{M_H}{\sqrt{s}}\sim 8\cdot 10^{-3}$$
 and $\mu_F^2\sim M_H^2\sim \ \sim 13000~{
m GeV}^2;$

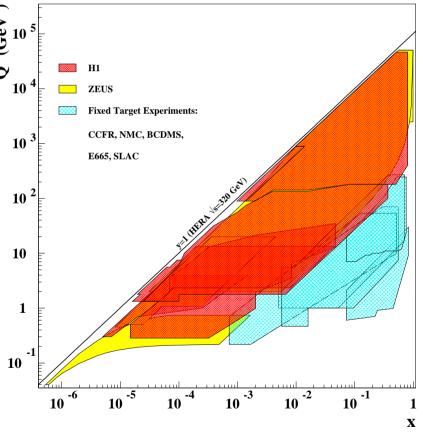
$$\Delta \sigma_H^{PDF}/\sigma_H \sim \pm 3\%$$
 $\stackrel{\coloredge}{\stackrel{\stackrel$


 σ_W sensitive to sea distribution at

$$x \sim \frac{M_W}{\sqrt{s}} \sim 6 \cdot 10^{-3}$$

Kinematics of Neutral Current Deep Inelastic Scattering



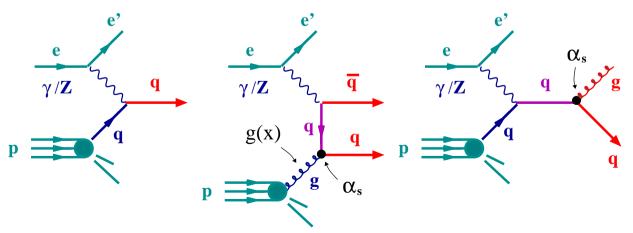

Neutral Current Deep Inelastic Scattering

• Neutral Current DIS event candidate

 $Q^2 \sim 24000~{
m GeV^2}$ and $x_{Bj} \sim 0.5$

• Coverage of kinematic plane (Q^2, x_{Bj})

J Terrón (Madrid) Göttingen, HASCO2012 July 20th, 2012


Neutral Current Deep Inelastic Scattering

• Inclusive process $e^{\pm}p \rightarrow e^{\pm} + {
m X}$

$$rac{d\sigma(e^{\pm}p)}{dxdQ^2} = rac{2\pilpha^2}{xQ^4} \cdot (\begin{array}{ccc} Y_+ \cdot F_2(x,Q^2) & -y^2 \cdot F_L(x,Q^2) & \mp Y_- \cdot xF_3(x,Q^2) \end{array}) \\ & \underline{ ext{Dominant}} \qquad \underline{ ext{High } y} \qquad \underline{ ext{High } Q^2}$$

where $Y_{\pm} = 1 \pm (1 - y)^2$ and $y = Q^2/(sx)$ (inelasticity parameter)

- Structure functions of the proton (F_2, F_L, F_3) and QCD
 - $ightarrow F_2 \sim x \sum_i e_i^2 \cdot (q_i(x,Q^2) + ar{q}_i(x,Q^2)) ext{ for } Q^2 \ll M_Z^2$
 - ightarrow the longitudinal structure function $F_L=0$ in the quark-parton model
 - ightarrow parity-violating term F_3 is small for $Q^2 \ll M_Z^2$

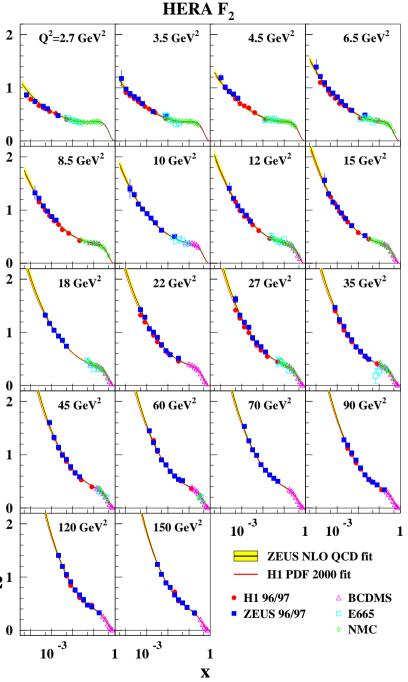
Clean probe of the

Parton Distribution Functions in the Proton

$$egin{aligned} oldsymbol{q}_i(x,oldsymbol{Q}^2), ar{q}_i(x,oldsymbol{Q}^2) \ oldsymbol{g}(x,oldsymbol{Q}^2) \end{aligned}$$

Quark-Parton Model

Boson-Gluon Fusion


QCD Compton

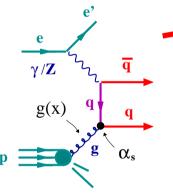
Determination of $F_2^{ m em}(x,Q^2)$

- Measurement of the doubly-differential cross section $d\sigma(e^+p)/dxdQ^2$ for the reaction $e^+p \to e^+ + {
 m X}$ over a large range $2.7 < Q^2 < 30000~{
 m GeV}^2, 6 \cdot 10^{-5} < x < 0.65^{-1}$
- Extraction of $F_2^{em}(x,Q^2)$ from the reduced cross of section (corrected for QED effects):

$$egin{aligned} ilde{\sigma}(e^+p) &= (2\pilpha^2Y_+/xQ^4)^{-1}d\sigma_{
m Born}/dxdQ^2 \ egin{aligned} ilde{F}_2^{
m em} &+ F_2^{
m int} \cdot \eta_{\gamma Z} + F_2^{wk} \cdot \eta_{\gamma Z}^2 \ &= F_2^{
m em}(1+\Delta_{F_2}) \ &= F_2^{
m em}(1+\Delta_{F_2}) \ & ext{where} \ \eta_{\gamma Z} &= Q^2/(Q^2+M_Z^2) \ & ext{} & ex$$

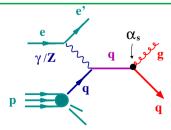
- Typical precision 2-3%
- ightarrow systematic uncertainties dominate $Q^2 < 800~{
 m GeV}^{2^1}$
 - ullet Striking rise of $F_2^{
 m em}$ as x decreases

 $Q^2(GeV^2)$

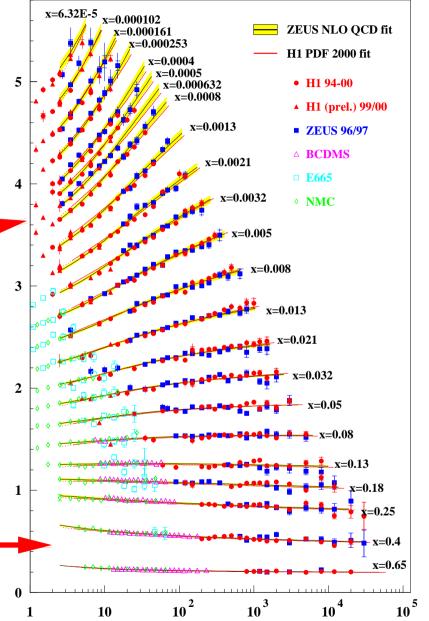

 $F_2^{
m em}(x,Q^2)$ provides...

 \rightarrow direct information on quark densities

$$F_2 \sim x \sum_i e_i^2 \cdot (q_i + \bar{q}_i)$$


- \rightarrow indirect information on gluon density
- ullet Large and positive scaling violations at low x

dominance of BGF $\partial F_2/\partial \ln Q^2 \sim \alpha_s \cdot xg$



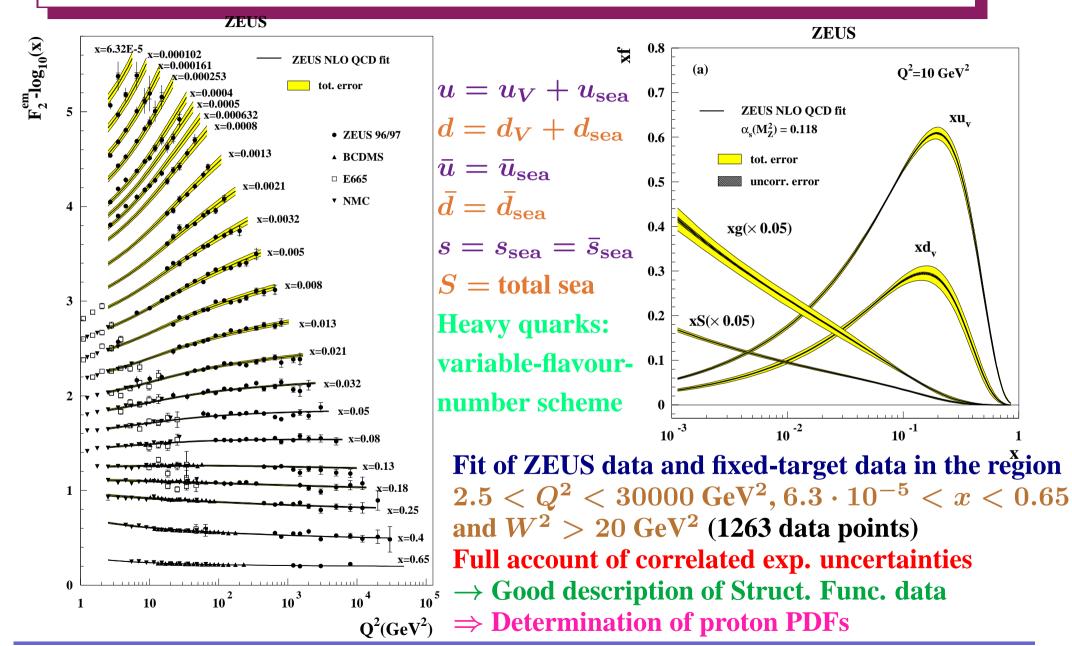
Boson-Gluon Fusion

- ullet Aproximate scaling for $x\sim 0.1$
- ullet Mild and negative scaling violations at high x

OCD Compto

Determination of the Parton Distribution Functions in the Proton

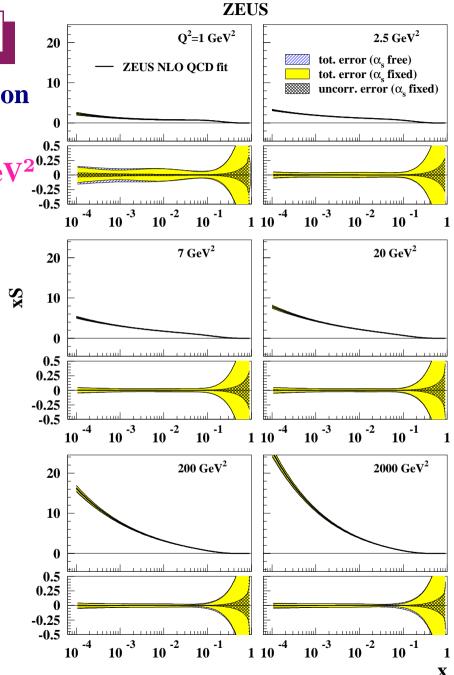
- In order to determine the proton PDFs additional experimental information is needed on
 - \rightarrow quark densities at high x
 - \rightarrow flavour composition of the sea
- Additional data sets
 - $\rightarrow F_2$ data on μp scattering from BCDMS, NMC and E665 \Rightarrow mid/high-x
 - ightarrow Deuterium-target data from NMC and E665 \Rightarrow $ar{u}, ar{d}$
 - ightarrow NMC data on the ratio $F_2^D/F_2^p \Rightarrow ext{high-} x \ d/u$
 - $\rightarrow xF_3$ data from CCFR (ν -Fe interactions) \Rightarrow high-x
- ullet Global analysis using DGLAP evolution equations at next-to-leading order (NLO) in $lpha_s$


$$\frac{\partial q_i(x,\mu^2)}{\partial \ln \mu^2} = \frac{\alpha_s(\mu^2)}{2\pi} \int_x^1 \frac{dz}{z} \left(\sum_j P_{q_i q_j} \cdot q_j(x/z,\mu^2) + P_{q_i g} \cdot g(x/z,\mu^2) \right)$$

$$rac{\partial g(x,\mu^2)}{\partial \ln \mu^2} = rac{lpha_s(\mu^2)}{2\pi} \int_x^1 rac{dz}{z} (\sum_j P_{gq_j} \cdot q_j(x/z,\mu^2) + P_{gg} \cdot g(x/z,\mu^2))$$

The DGLAP equations yield the proton PDFs at any value of Q^2 provided they are input as functions of x at some input scale Q_0^2

 \rightarrow number sum rules and the momentum sum rule are imposed


Determination of the Parton Distribution Functions in the Proton

Determination of the Sea Distribution

• The total sea distribution $xS(x,Q^2)$ as a function of x for different Q^2 values \Rightarrow

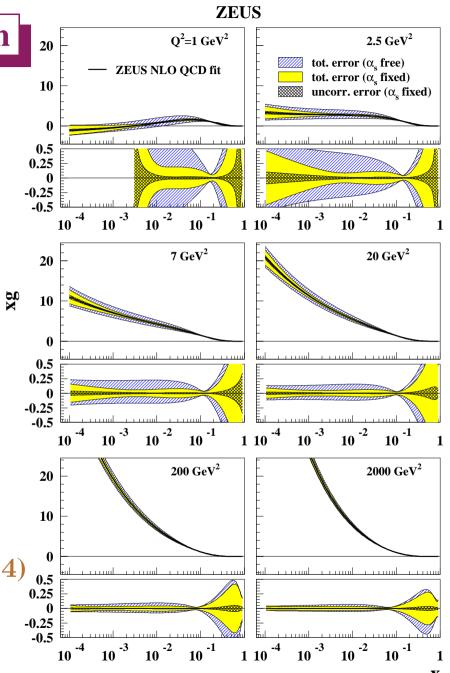
ullet Its uncertainty is below $\sim 5\%$ for $Q^2>2.5~{
m GeV}^{0.25}_{0.25}$ and $10^{-4} < x < 0.1$

Determination of the Gluon Distribution

- The gluon distribution $xg(x,Q^2)$ as a function of x for different Q^2 values \Rightarrow
- ullet Its uncertainty is $\sim 10\%$ for $Q^2 \sim 20~{
 m GeV^2}$ and $10^{-4} < x < 0.1$
 - \rightarrow the uncertainty decreases as Q^2 increases

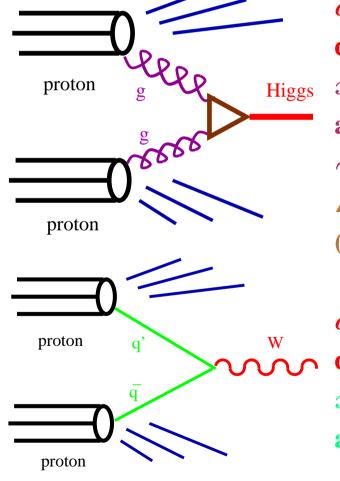
Determination of α_s

• Inclusion of low-x data allows a simultaneous (and precise) determination of PDFs and α_s :


$$lpha_s(M_Z) = 0.1166 \pm 0.0008 (\mathrm{uncorr}) \\ \pm 0.0032 (\mathrm{corr}) \pm 0.0036 (\mathrm{norm})$$

$$\pm 0.0018 \text{(model)} \Rightarrow 0.1166 \pm 0.0052$$

(+theor. unc. due to terms beyond NLO $\sim \pm 0.004$)

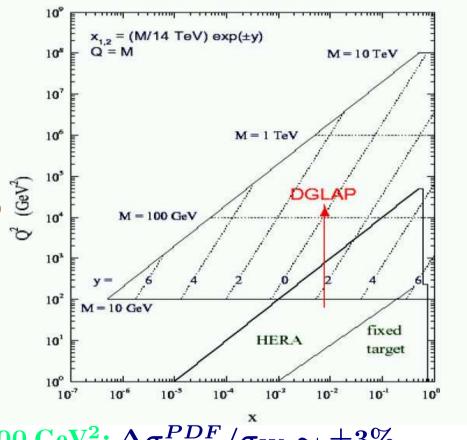

• Consistent with world average (Bethke, 2011):

$$\rightarrow \alpha_s(M_Z) = 0.1184 \pm 0.0007$$

Universality (and usefulness) of Proton PDFs

$$\sigma_{pp o H(W,Z,...)+{
m X}} = \sum_{a,b} \int_0^1 dx_1 \; f_{a/p}(x_1,\mu_F^2) \int_0^1 dx_2 \; f_{b/p}(x_2,\mu_F^2) \; \hat{\sigma}_{ab o H(W,Z,...)}$$

 σ_H sensitive to gluon distribution at

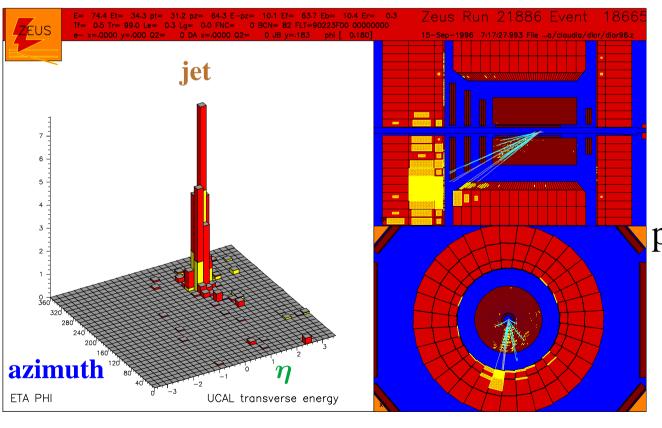

Higgs
$$x\sim {M_H\over \sqrt s}\sim 8\cdot 10^{-3}$$
 and $\mu_F^2\sim M_H^2\sim$ $\sim 13000~{
m GeV}^2;$

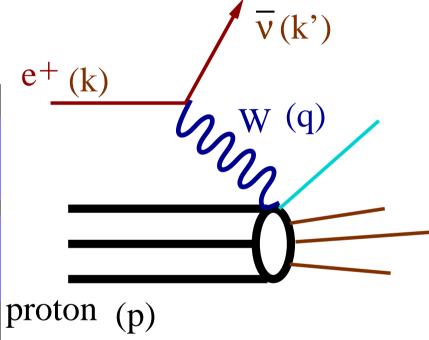
$$\Delta \sigma_H^{PDF}/\sigma_H \sim \pm 3\%$$
 $\stackrel{\coloredge}{\stackrel{\stackrel$

 σ_W sensitive to sea distribution at

$$x \sim \frac{M_W}{\sqrt{s}} \sim 6 \cdot 10^{-3}$$

and $\mu_F^2\sim M_W^2\sim 6400~{
m GeV^2}; \Delta\sigma_W^{PDF}/\hat{\sigma}_W\sim \pm 3\%$


LHC parton kinematics


Structure Functions (II)

Charged Current Deep Inelastic Scattering

• Charged Current DIS event candidate

$$Q^2 \sim 1200~{
m GeV^2}$$
 and $x_{Bj} \sim 0.06$

J Terrón (Madrid) Göttingen, HASCO2012 July 20th, 2012

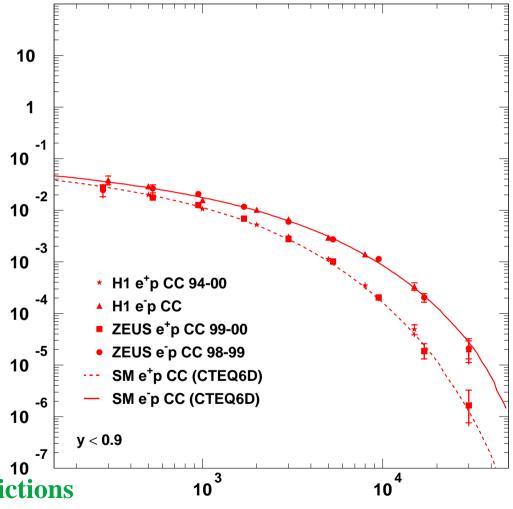
Charged Current Deep Inelastic Scattering

• Measurements of the differential cross section

$$d\sigma/dQ^2$$
 in Charged Current DIS $e^\pm p$ (Solve) $ep o
u + X$ Cross-section formulae in LO QCD

• Cross-section formulae in LO QCD

$$\frac{d\sigma(e^{+}p)}{dxdQ^{2}} = \frac{G_{F}^{2}}{2\pi} \eta_{W}^{2} \cdot \sum_{i} (\bar{u}_{i} + (1-y)^{2} d_{i})$$
$$\frac{d\sigma(e^{-}p)}{dxdQ^{2}} = \frac{G_{F}^{2}}{2\pi} \eta_{W}^{2} \cdot \sum_{i} (u_{i} + (1-y)^{2} \bar{d}_{i})$$


where
$$\eta_W=M_W^2/(Q^2+M_W^2)$$

- \Rightarrow W-Propagator effects
- \Rightarrow flavour selection:

d(u)-quark contributes only to $e^+p(e^-p)$

• Good description by Standard Model Predictions up to the highest $Q^2 \sim 30000~{\rm GeV^2}$

 Q^2 (GeV²)

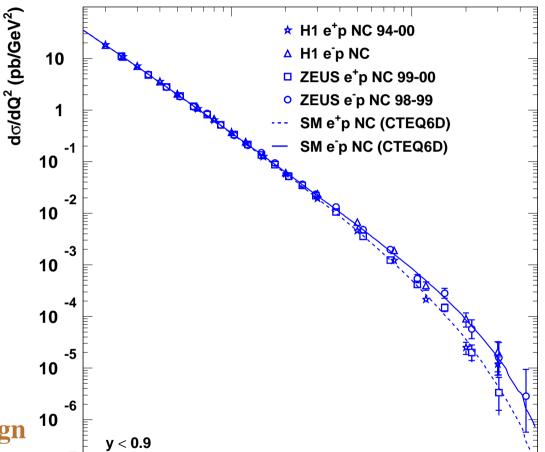
Neutral Current Deep Inelastic Scattering

• Measurements of the differential cross section

 $d\sigma/dQ^2$ in Neutral Current DIS $e^\pm p$

$$ep \rightarrow e + X$$

Cross-section formulae in LO QCD


$$rac{d\sigma(e^\pm p)}{dxdQ^2} = rac{2\pilpha^2}{xQ^4}\cdot (Y_+\cdot F_2(x,Q^2) -$$

$$-y^2 \cdot F_L(x,Q^2) \mp Y_- \cdot x F_3(x,Q^2)$$

$$F_2 = F_2^{\mathrm{em}} + F_2^{\mathrm{int}} \cdot \eta_{\gamma Z} + F_2^{wk} \cdot \eta_{\gamma Z}^2$$

where
$$\eta_{\gamma Z}=Q^2/(Q^2+M_Z^2)$$

- \Rightarrow Z-Propagator effects
- \Rightarrow Parity-violating term (F_3) changes sign
- ullet Good description by Standard Model Predictions up to the highest $Q^2 \sim 40000~{
 m GeV}^2$

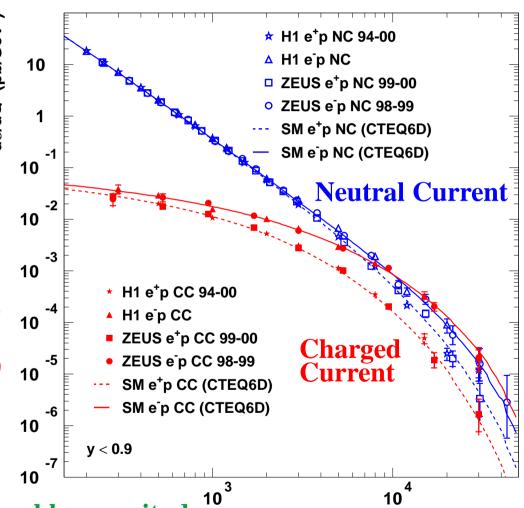
HERA

 Q^2 (GeV²)

10

Neutral vs Charged Current Deep Inelastic Scattering

• Measurements of the differential cross section


$$d\sigma/dQ^2$$
 in Neutral Current DIS $e^\pm p$

$$egin{aligned} rac{d\sigma(e^{\pm}p)}{dxdQ^2} &= rac{2\pilpha^2}{xQ^4} \cdot (Y_+ \cdot F_2(x,Q^2) - \ -y^2 \cdot F_L(x,Q^2) \mp Y_- \cdot x F_3(x,Q^2)) \end{aligned} \ F_2 &= F_2^{
m em} + F_2^{
m int} \cdot \eta_{\gamma Z} + F_2^{wk} \cdot \eta_{\gamma Z}^2 \ ext{where } \eta_{\gamma Z} = Q^2/(Q^2 + M_Z^2) \end{aligned}$$

and Charged Current DIS $e^{\pm}p$

$$rac{d\sigma(e^+p)}{dxdQ^2} = rac{G_F^2}{2\pi} \eta_W^2 \cdot \sum_i (ar{u}_i + (1-y)^2 d_i) \,_{10}^{-4} \ rac{d\sigma(e^-p)}{dxdQ^2} = rac{G_F^2}{2\pi} \eta_W^2 \cdot \sum_i (u_i + (1-y)^2 ar{d}_i) \,_{10}^{-5} \ ext{where } \eta_W = M_W^2/(Q^2 + M_W^2) \,_{10}^{-6}$$

HERA

NC and CC DIS cross sections have comparable magnitudes

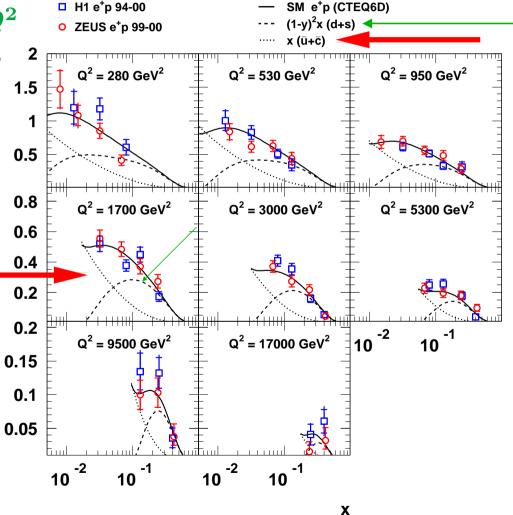
 Q^2 (GeV²) at $Q^2 \sim M_W^2 \sim M_Z^2 \sim 10^4 \ {
m GeV^2} \Rightarrow$ Direct observation of electroweak unification

Charged Current Deep Inelastic e^+p Scattering

Measurement of the reduced cross section in CC DIS:

$$\tilde{\sigma}(e^+p)=(G_F^2\eta_W^2/2\pi x)^{-1}d\sigma_{\mathrm{Born}}/dxdQ^2$$

→ Sensitivity to flavour composition


$$\tilde{\sigma}(e^+p) = x(\bar{u} + \bar{c} + (1-y)^2(d+s))$$

→ Sensitivity to valence quarks

$$ilde{\sigma}(e^+p)
ightarrow x(1-y)^2 d_V ext{ (high-}x)$$

- Good description by SM predictions based on CTEQ6 parametrizations of PDFs
- → valence quarks and flavour composition determined from fixed-target data

HERA e⁺p Charged Current

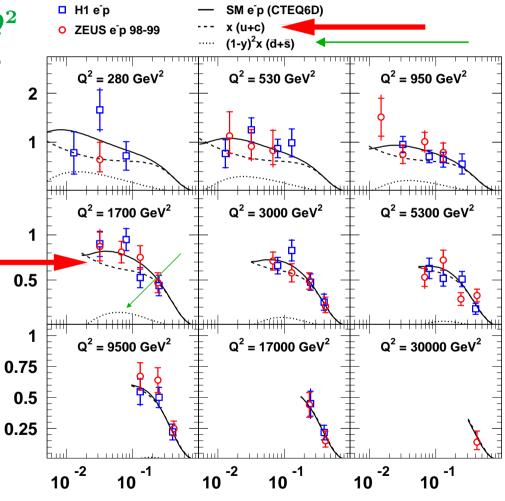
≀ b

Charged Current Deep Inelastic e^-p Scattering

Measurement of the reduced cross section in CC DIS:

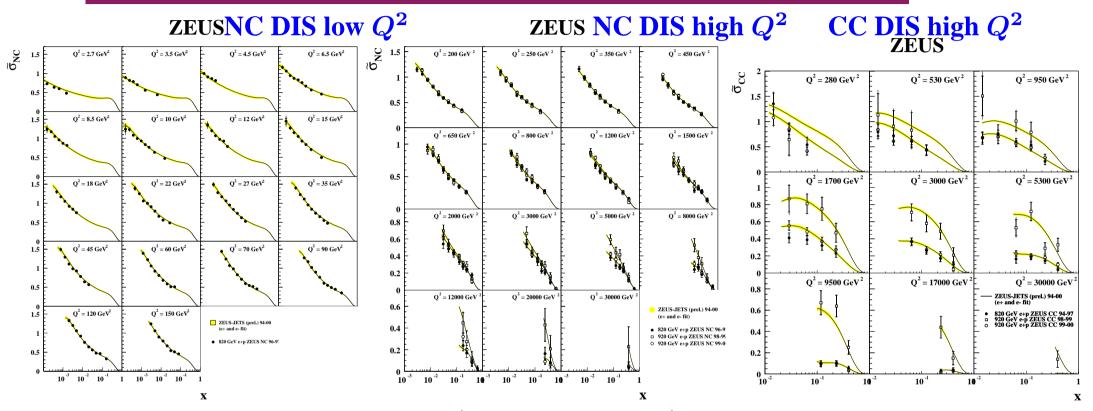
$$\tilde{\sigma}(e^-p) = (G_F^2 \eta_W^2/2\pi x)^{-1} d\sigma_{\mathrm{Born}}/dx dQ^2$$

→ Sensitivity to flavour composition


$$\tilde{\sigma}(e^-p) = x(u + c + (1 - y)^2(\bar{d} + \bar{s}))$$

→ Sensitivity to valence quarks

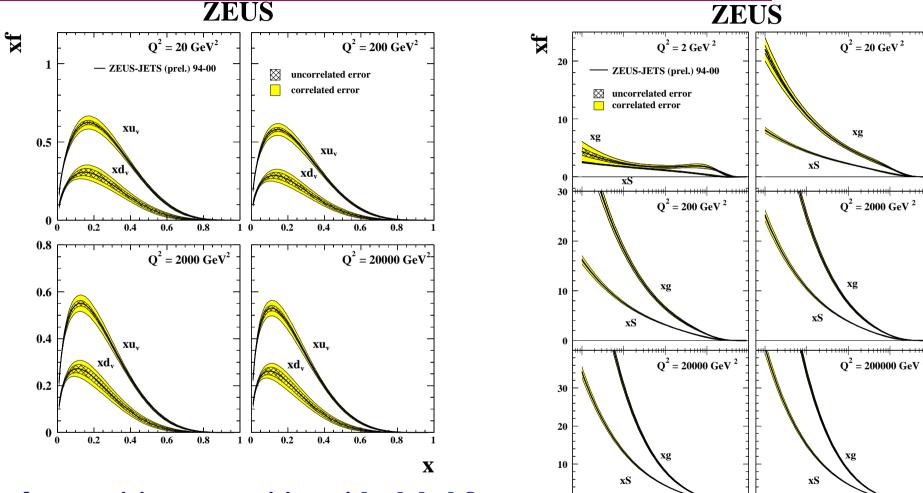
$$\tilde{\sigma}(e^-p) o x u_V ext{ (high-}x)$$


- Good description by SM predictions based on CTEQ6 parametrizations of PDFs
- → valence quarks and flavour composition determined from fixed-target data

HERA e p Charged Current

X

Determination of the Proton PDFs with ZEUS data alone

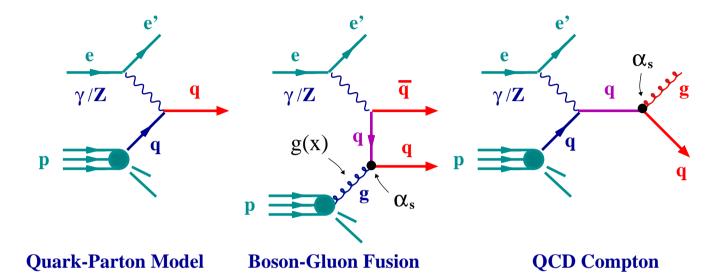

- ullet Fit of ZEUS-only data: NC DIS $e^\pm p$ and CC DIS $e^\pm p$ in the region
 - $2.5 < Q^2 < 30000~{
 m GeV^2}, 6.3 \cdot 10^{-5} < x < 0.65~{
 m and}~W^2 > 20~{
 m GeV^2}$

using DGLAP evolution equations at NLO: $\rightarrow xu_V, xd_V, xS, xg$

(no HERA information on flavour composition of the sea: flavour-averaged sea)

⇒ Good description of Structure Function data (577 data points)

Determination of the Proton PDFs with ZEUS data alone


- ullet xu_V, xd_V : precision competitive with global fits
- \rightarrow free from uncert. due to nuclear corrections and higher-twist effects
- xS, xg: as precise as in global fits (HERA data are crucial)

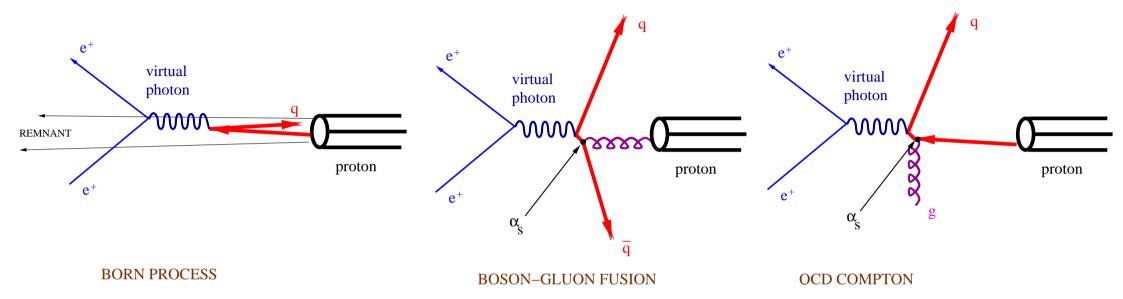
X

Jets in NC DIS

Jet Production in Neutral Current Deep Inelastic Scattering

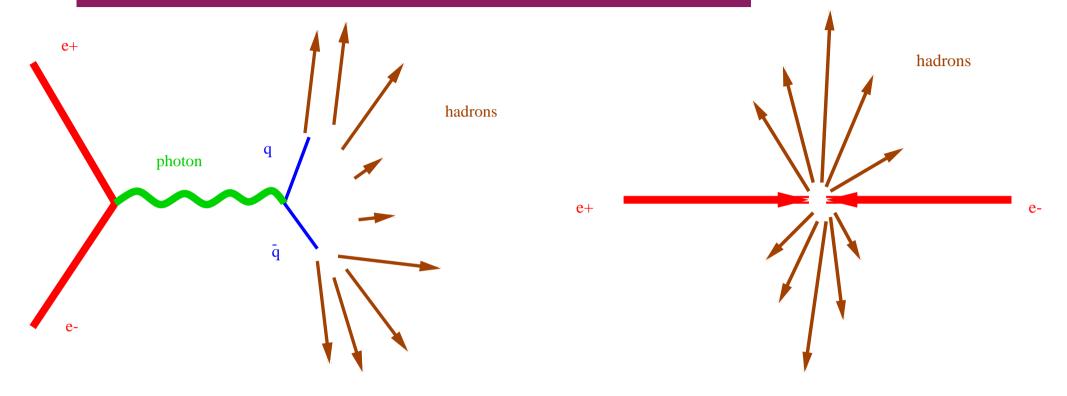
• Jet production in neutral current deep inelastic scattering up to $\mathcal{O}(\alpha_s)$:

Perturbative QCD calculations of jet cross sections:

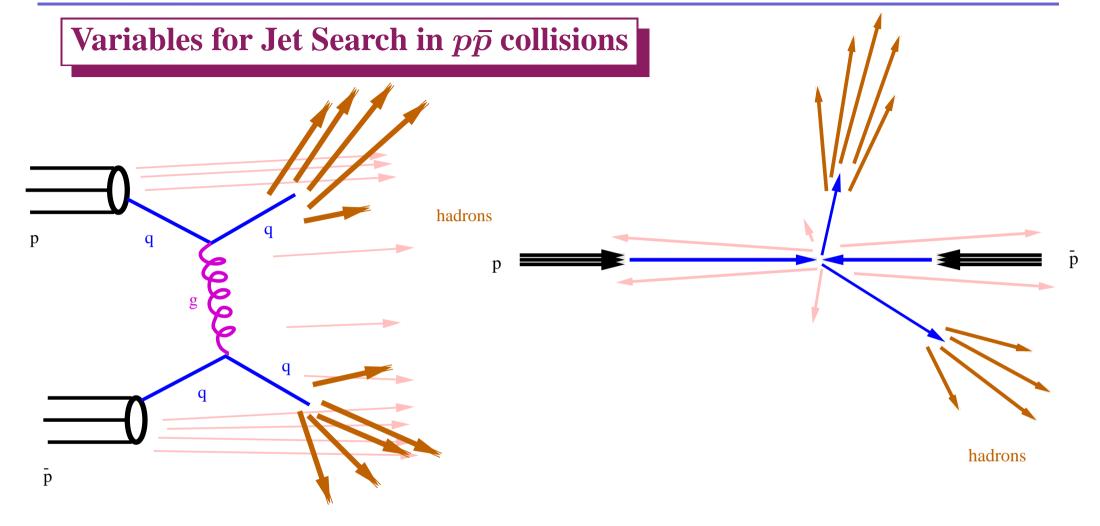

$$\sigma_{jet} = \sum_{a=q,ar{q},g} \int dx \, f_a(x,\mu_F^2) \, \hat{\sigma}_a(x,lpha_s(\mu_R),\mu_R^2,\mu_F^2)$$

- $-f_a$: parton a density in the proton, determined from experiment; long-distance structure of the target
- $-\hat{\sigma}_a$: subprocess cross section, calculable in pQCD; short-distance structure of the interaction

Jet Production in Neutral Current Deep Inelastic Scattering


- In the region where the wealth of data from fixed-target and collider experiments has allowed an accurate determination of the proton PDFs, measurements of jet production in NC DIS provide
 - \rightarrow a sensitive test of the pQCD predictions of the short-distance structure
 - ightarrow a determination of the strong coupling constant $lpha_s$
- ullet To perform a stringent test of the pQCD predictions and a precise determination of α_s :
 - * Observables for which the predictions are directly proportional to α_s
 - \rightarrow <u>Jet cross sections in the Breit frame</u>
 - * Small experimental uncertainties \rightarrow Jets with relatively high transverse energy
 - * Small theoretical uncertainties \rightarrow NLO QCD calculations
 - \rightarrow Jet algorithm: <u>longitudinally invariant k_T cluster algorithm</u> (Catani et al) (small parton-to-hadron effects, infrared safe, suppression of beam-remnant jet)
 - \rightarrow Jet selection criteria

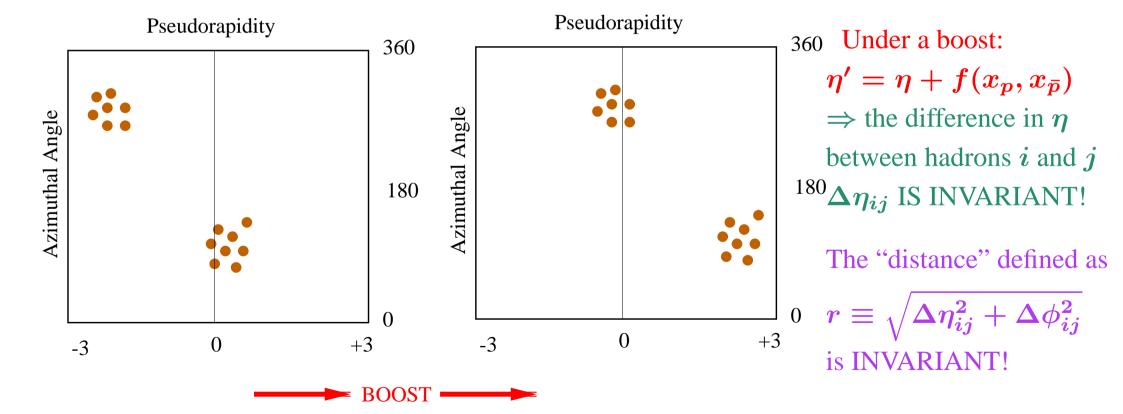
High- E_T Jet Production in the Breit Frame



- In the Breit frame the virtual boson collides head-on with the proton
- ullet High- E_T jet production in the Breit frame
 - ightarrow suppression of the Born contribution (struck quark has zero E_T)
 - ightarrow suppression of the beam-remnant jet (zero E_T)
 - ightarrow lowest-order non-trivial contributions from $\gamma^* g
 ightarrow q ar q$ and $\gamma^* q
 ightarrow q g$
 - \Rightarrow directly sensitive to hard QCD processes (α_s)

Variables for Jet Search in e^+e^- annihilations

- \bullet e^+e^- annihilations in the centre-of-mass system
- Invariance under rotations \Rightarrow Energies and angles
- \Rightarrow Input to the jet algorithm: E_i , θ_i and ϕ_i for every hadron i
- \Rightarrow "distance" between hadrons i and j: their angular separation θ_{ij}

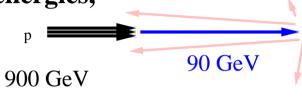


- ullet $par{p}$ collisions in the centre-of-mass system
- However the initial-state parton-parton system is NOT at rest! depending upon the momentum fractions, x_p and $x_{\bar p}$, wrt the parent hadrons
- \Rightarrow the final-state partonic system is BOOSTED along the beam axis

Variables for Jet Search in $p\bar{p}$ collisions (II)

- Angular separations are NOT invariant under boosts!
- \Rightarrow a given set of hadrons will be appear more collimated depending upon the boost
- To treat on equal footing all possible final-state hadronic systems

invariance under longitudinal boosts \Rightarrow transverse energy, pseudorapidity* and azimuthal angle


Variables for Jet Search in $p\bar{p}$ collisions (III)

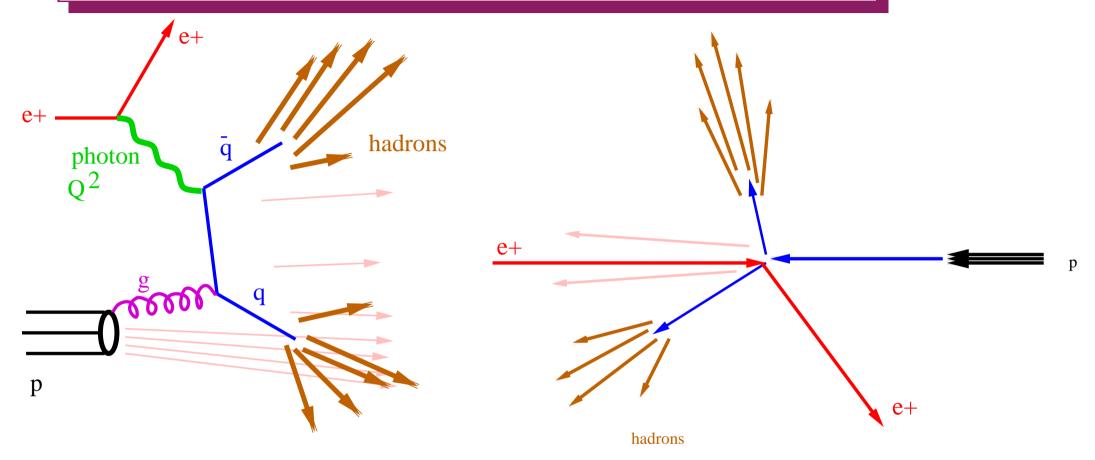
Advantage of using transverse energies:

Large energy \neq small distance (hard scattering!)

The beam remnant jets have huge energies, but they HAVE NOT undergone a hard scattering!

855 GeV

45 GeV

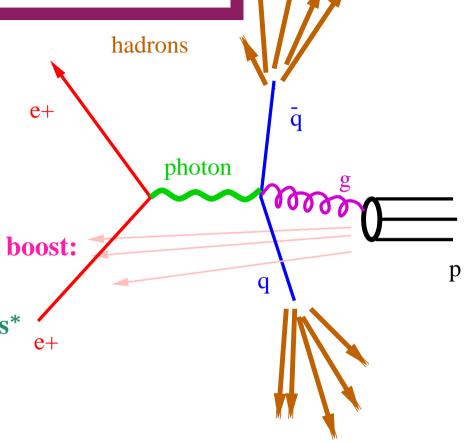

810 GeV

900 GeV

- Large momentum transfer \equiv small distance (hard scattering!)
- \Rightarrow large transverse energies signal a hard interaction

- E=73.3 GeV hadrons $E_T = 61.5 \text{ GeV}$
- The use of transverse energies helps to disentangle between the products of the hard interaction and the beam remnant jets (absent in e^+e^- annihilations)
- \Rightarrow Input to the jet algorithm: $E_{T,i}$, η_i and ϕ_i for every hadron i
- \Rightarrow "distance" between hadrons i and j: $\sqrt{\Delta\eta_{ij}^2 + \Delta\phi_{ij}^2}$

Variables for Jet Search in ep collisions at high Q^2 (DIS)


- The kinematics of ep collisions at high Q^2 poses several challenges:
- \rightarrow Presence of beam remnant jet
- \rightarrow the initial-state γ^* -parton system is boosted (the parton carries a fraction of the proton's momentum) and rotated (the γ^* carries P_T)

Variables for Jet Search in ep collisions at high Q^2 (II)

- ullet The effect of the P_T carried by the γ^* is removed
 - \rightarrow by selecting a frame in which the γ^* collides head-on with the proton (the Breit frame is one example)

 \rightarrow the use of transverse energies, pseudorapidities* and azimuthal angles

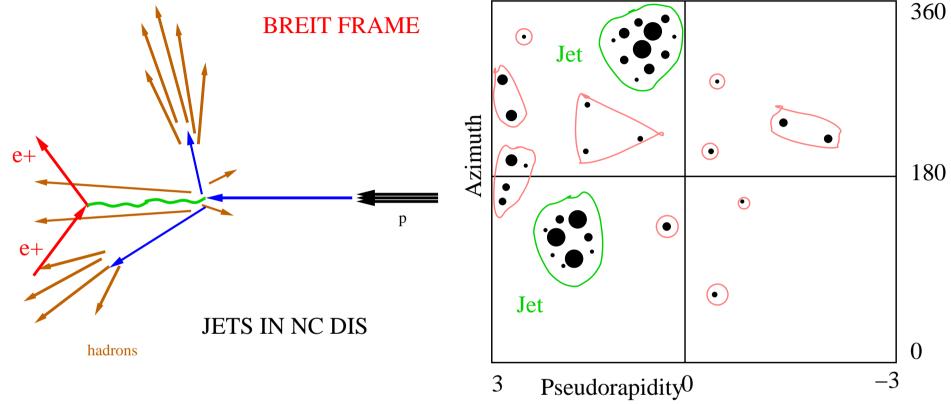
- The use of transverse energies helps to suppress the effects of the beam remnant jet
 - \Rightarrow Input to the jet algorithm: $E_{T,i}^B$, η_i^B and ϕ_i^B in the Breit frame for every hadron i
 - \Rightarrow "distance" between hadrons i and j: $\sqrt{(\Delta\eta^B_{ij})^2+(\Delta\phi^B_{ij})^2}$ in the Breit frame

The best choice for jet algorithm in ep collisions

- There is no best choice since, at the end, it is a question of having the smallest uncertainty for the given observable:
 - \rightarrow the smallest theoretical uncertainties (higher-order contributions)
 - \rightarrow the smallest hadronisation effects
 - \rightarrow the smallest experimental uncertainties
- At present, the longitudinally invariant k_T algorithm is a good choice for accurate comparisons between data and perturbative QCD at HERA
 - \rightarrow jet cross sections in neutral current DIS
 - \rightarrow jet cross sections in photoproduction
- ullet Performance of the longitudinally invariant k_T algorithm in ZEUS:
 - \rightarrow small higher-order contributions (5%, 10 20%; varying μ_R by factors 0.5 and 2)
 - \rightarrow small hadronisation corrections (< 10%, < 10%; comparing hadron/parton levels)
 - \rightarrow small hadronisation uncertainties (1\%, 2 3\%; comparing two MC models)
 - \rightarrow small experimental uncertainties (3\%, 4\%; comparing two MC models)

The longitudinally invariant k_T algorithm for ep collisions

- The clustering procedure is as follows:
 - \rightarrow List of particles (or calorimeter cells, . . .)
 - ightarrow For every object k and for every pair of objects i,j the "distances" are evaluated $d_k^2=E_{T,k}^2$ (distance to the beam)


$$d_{ij}^2 = \min(E_{T,i}^2, E_{T,j}^2) \cdot ((\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2)$$

 \rightarrow If, of all the values $\{d_k^2, d_{ij}^2\}$, d_{mn}^2 is the smallest, then objects m and n are combined into a single new object according to

$$E_{T,ij}=E_{T,i}+E_{T,j}, \quad \eta_{ij}=rac{E_{T,i}\cdot\eta_i+E_{T,j}\cdot\eta_j}{E_{T,ij}}, \quad \phi_{ij}=rac{E_{T,i}\cdot\phi_i+E_{T,j}\cdot\phi_j}{E_{T,ij}}$$

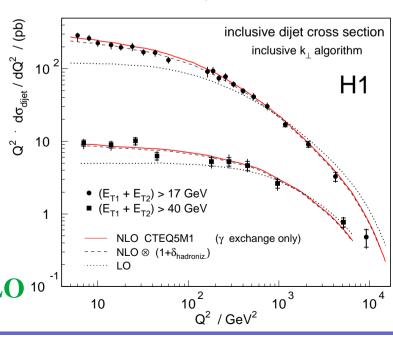
- ightarrow If, however, d_k^2 is the smallest, then object k is considered a "protojet" and is removed from the list
- \rightarrow The procedure is iterated until the list of objects is empty
- From the list of "protojets" the jets are selected by imposing certain criteria:
 - ightarrow jet pseudorapidity in the range $C_L < \eta_{
 m jet} < C_U$
 - ightarrow jet transverse energy in the range $E_{T,
 m jet} > E_{T, 0}$
- \Rightarrow the lower the $E_{T,0}$ is the larger the theoretical and experimental uncertainties are!

The longitudinally invariant k_T algorithm for NC DIS

- Infrared and collinear safe to all orders in perturbative QCD
- ullet Invariant under longitudinal boosts (along the γ^* -proton axis)
- Suppression of beam remnant jet contributions through the use of transverse energies and by not forcing all the particles to be assigned to jets (nor requiring a certain jet shape)
- Small experimental and theoretical uncertainties

Dijet Cross Sections in NC DIS (5 $< Q^2 < 15000~{ m GeV^2}$)

- Measurement of differential dijet cross sections over a wide range in $Q^2 \rightarrow 5 < Q^2 < 15000 \ \mathrm{GeV^2}$ and 0.2 < y < 0.6 for dijet production with $E_T^{jet,1(2)}(\mathrm{Breit}) > 5 \ \mathrm{GeV}$ $E_T^{jet,1}(\mathrm{Breit}) + E_T^{jet,2}(\mathrm{Breit}) > 17 \ \mathrm{GeV}$ $-1 < \eta^{jet,1(2)}(\mathrm{Lab}) < 2.5$
- Detailed investigation of the jet algorithms:
- ightarrow Smallest parton-to-hadron effects: inclusive k_T
- Comparison with NLO QCD calculations:


$$ightarrow \mu_R = ar{E}_T, \mu_F = \sqrt{200} ext{ GeV}$$

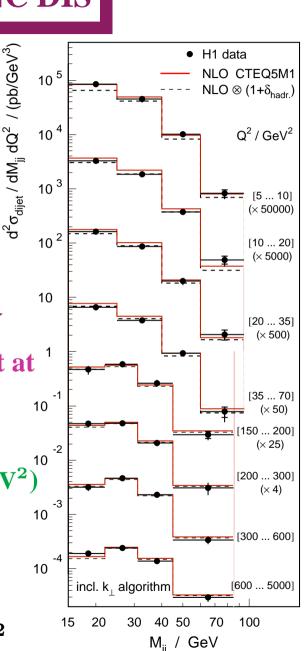
- → CTEQ5M1 parametrisations of proton PDFs
- \rightarrow parton-to-hadron corrections applied
- NLO QCD gives a good description of the data over a wide range in Q^2 and E_T ; the Q^2 dependence is observed to be reduced at high- E_T and described by NLO ¹⁰

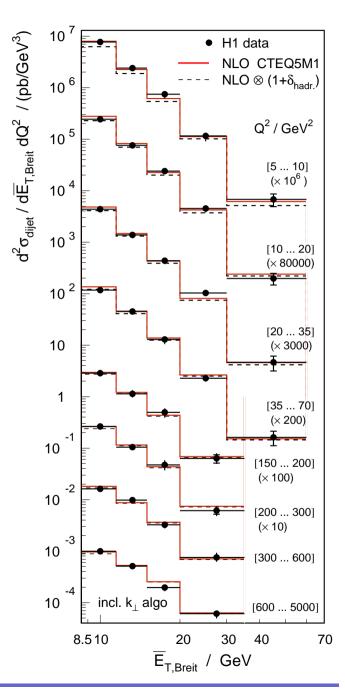
hadronization corrections (HERWIG)

output

ou

Dijet Cross Sections in NC DIS


- ullet Measurement of double differential cross sections $d\sigma/dM_{JJ}dQ^2, d\sigma/dar{E}_TdQ^2$ over $5 < Q^2 < 5000~{
 m GeV}^2$
- It is observed that the spectra get harder as Q^2 increases
- ullet NLO QCD describes well the data over $15 < M_{JJ} < 95~{
 m GeV}$ and $8.5 < ar{E}_T < 60~{
 m GeV}$ except at low Q^2 , where the shape is ok but not the normalisation
- Overview: at high Q^2 (> 70 GeV²)


 NLO describes the data well;

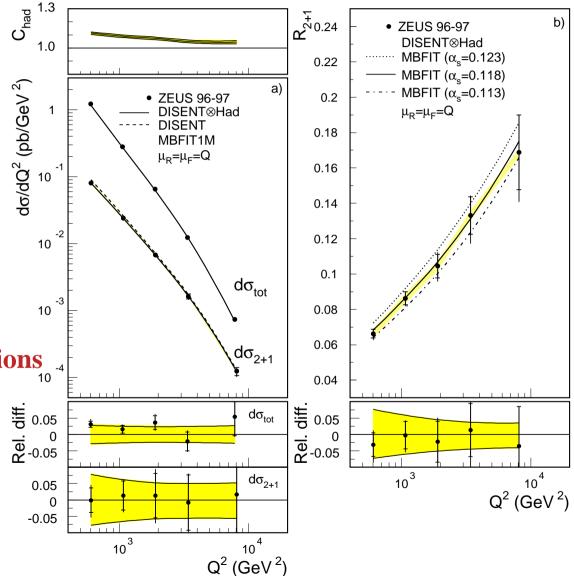
 as Q^2 decreases the theoretical

 uncertainties become large

 and NLO fails for $Q^2 < 10 \text{ GeV}^2$

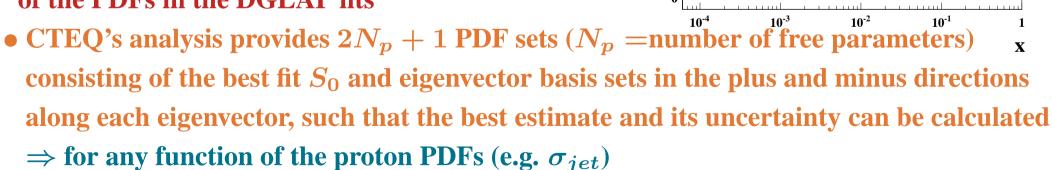
Dijet Cross Sections at $Q^2>470~{ m GeV^2}$ and extraction of α_s

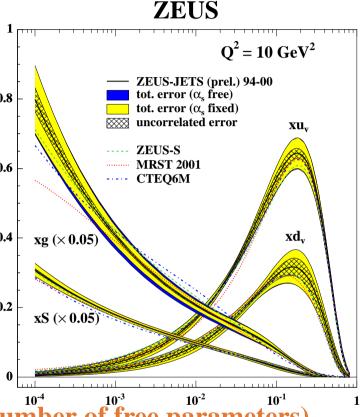
• Dijet cross section $d\sigma_{2+1}/dQ^2$ for


$$470 < Q^2 < 20000~{
m GeV^2}$$

$$E_T^{jet,1}(ext{Breit}) > 8 ext{ GeV}$$
 $E_T^{jet,2}(ext{Breit}) > 5 ext{ GeV}$
 $-1 < \eta^{jet,1(2)}(ext{Lab}) < 2$

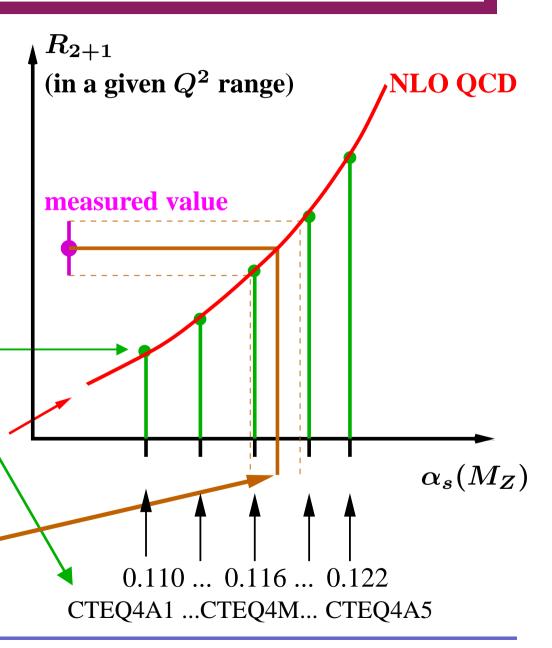
$$ightarrow$$
 Ratio $R_{2+1}\equivrac{d\sigma_{2+1}/dQ^2}{d\sigma_{tot}/dQ^2}$


- Small experimental uncertainties.
- Comparison with NLO QCD calculations
- Small theoretical uncertainties:
 - → uncertainties on the proton PDFs
 - → hadronisation corrections
 - \rightarrow higher-order terms (> NLO)



Uncertainties of the Proton PDFs: effects on jet cross sections

- Comparison of jet cross-section calculations using different parametrisations of the proton PDFs
 (e.g. MRST vs CTEQ) DOES NOT give a reliable estimation of the uncertainties due to the proton PDFs
- Several groups have developed methods to quantify these uncertainties by accounting (properly) for
- ightarrow the statistical and correlated systematic uncertainties of each data set used in the determination of the PDFs $_{0.2}$
- \rightarrow the theoretical uncertainties affecting the extraction of the PDFs in the DGLAP fits



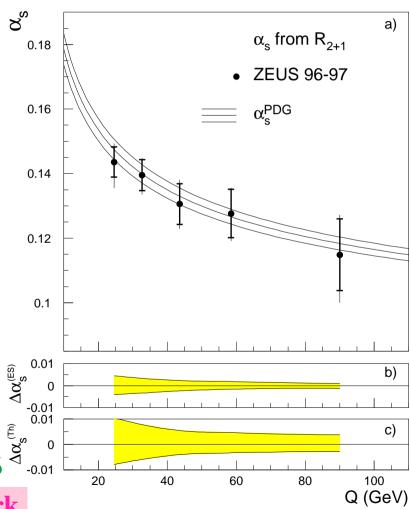
$$\Delta \sigma_{jet} = \frac{1}{2} (\sum_{i=1,N_p} [\sigma_{jet}(S_i^+) - \sigma_{jet}(S_i^-)]^2)^{1/2}$$

Dijet Cross Sections at $Q^2>470~{ m GeV^2}$ and extraction of $\alpha_s(M_Z)$

- NLO QCD calculations of $d\sigma_{2+1}/dQ^2$ depend on $\alpha_s(M_Z)$ through
- \rightarrow Matrix Elements: $\hat{\sigma} \sim A \cdot \alpha_s + B \cdot \alpha_s^2$
- \rightarrow proton PDFs: α_s assumed in evolution
- To take into account the correlation the NLO QCD calculations are performed using various sets of proton PDFs which assume different values of α_s
- The resulting NLO QCD calculations are parametrised as a function of $\alpha_s(M_Z)$ in each region of Q^2 of the measurements
- From the measured value of R_{2+1} in each region of Q^2 the value of $\alpha_s(M_Z)$ and its uncertainty are extracted

Dijet Cross Sections at $Q^2>470~{ m GeV^2}$ and extraction of α_s

- Study of the scale dependence of $\alpha_s(Q)$: from the measured $R_{2+1}(Q^2)$ in each Q^2 region $\rightarrow \alpha_s(< Q>)$ is extracted The measurements are consistent with the running of α_s predicted by perturbative QCD
- A combined value of $\alpha_s(M_Z)$ has been extracted:

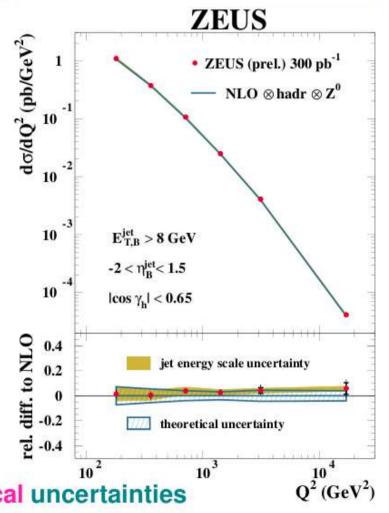

$$lpha_s(M_Z) = 0.1166 \pm 0.0019 \text{ (stat.)}$$

$$^{+0.0024}_{-0.0033} \text{ (exp.)}^{+0.0057}_{-0.0044} \text{ (th.)}$$

- The theoretical uncertainty dominates:
- ightarrow terms beyond NLO $\Deltalpha_s(M_Z)={}^{+0.0055}_{-0.0042}$
- ightarrow uncertainties proton PDFs $\Deltalpha_s(M_Z)={}^{+0.0012}_{-0.0011}$
- ightarrow hadronisation corrections $\Delta lpha_s(M_Z) = \pm 0.0005$

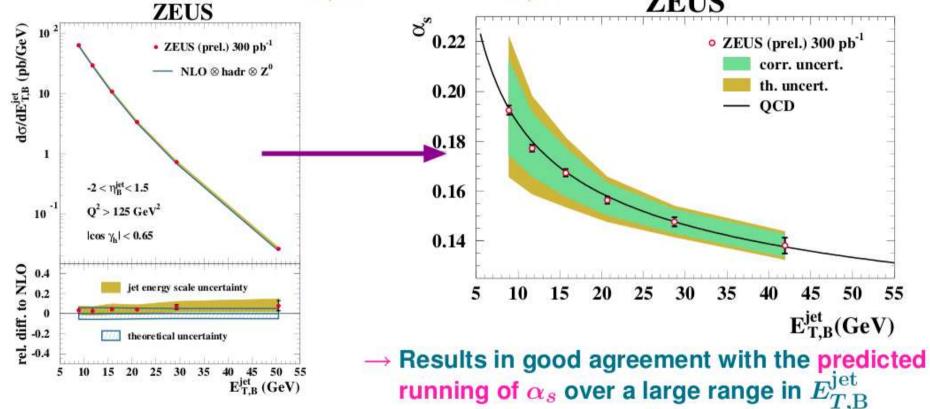
Improvements depend upon further Theoretical Work

ZEUS



Inclusive Jet Cross Sections in NC DIS at $Q^2>125~{ m GeV^2}$

$ep ightarrow e + { m jet} + { m X}$: inclusive jets at high Q^2

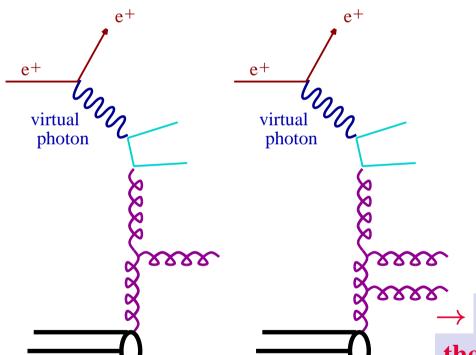

- ullet Jets searched using the k_T cluster algorithm in Breit frame
- ullet Kinematic region: $Q^2 > 125~{
 m GeV}^2$ and $|\cos\gamma_h| < 0.65$
- ullet At least one jet with $E_{T,\mathrm{B}}^{\mathrm{jet}}\!>\!8~\mathrm{GeV}$ and $-2\!<\!\eta_{\mathrm{B}}^{\mathrm{jet}}\!<\!1.5$
- Small experimental uncertainties
 - ightarrow uncorrelated: $\sim \pm 3~(7)\%$ at low (high) $Q^2/E_{T,{
 m B}}^{
 m jet}$
 - ightarrow correlated: $\sim \pm 5~(2)\%$ at low (high) $Q^2/E_{T,{
 m B}}^{
 m jet}$
- Small theoretical uncertainties
 - ightarrow higher orders (below $\pm 5\%$ for $Q^2>250~{
 m GeV^2}$)
 - \rightarrow proton PDFs (below $\pm 3\%$)
 - $ightarrow lpha_s(M_Z)$ (below $\pm 1~(2)\%$ at low (high) $Q^2/E_{T,
 m B}^{
 m jet}$)
 - \rightarrow parton-to-hadron corrections (below $\pm 2\%$)
- → Good description of data by NLO prediction
 - ightarrow validity of the description of the dynamics of jet production at $\mathcal{O}(\alpha_s^2)$
- \rightarrow Measurements provide direct sensitivity to $\alpha_s(M_Z)$ with small experimental and theoretical uncertainties

Inclusive Jet Cross Sections and extraction of α_s

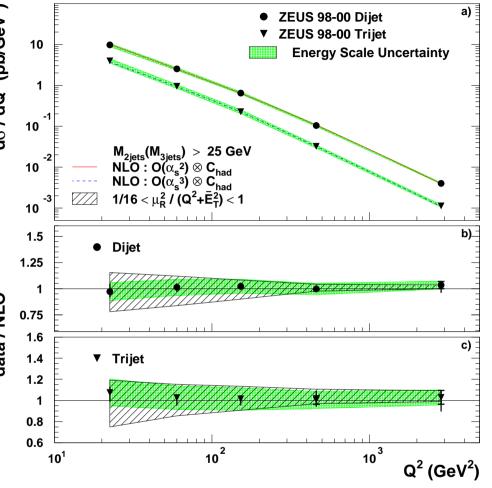
• The energy-scale dependence of the coupling was determined by extracting α_s from the measured $d\sigma/dE_{T,\mathrm{B}}^{\mathrm{jet}}$ at different $E_{T,\mathrm{B}}^{\mathrm{jet}}$ values:

• A value of $\alpha_s(M_Z)$ was determined from $Q^2 > 500 \text{ GeV}^2$:

$$\alpha_s(M_Z) = 0.1208^{+0.0037}_{-0.0032} \, (\text{exp.}) \, ^{+0.0022}_{-0.0022} \, (\text{th.})$$


experimental uncertainty: $^{+3.1}_{-2.6}\%$

theoretical uncertainty: $\pm 1.9\%$


Three-jet cross sections in NC DIS

• Three-jet cross sections test QCD beyond LO $^{50}_{20}$ 0 directly o $\sigma_{3jet} \propto \alpha_s^2$ 0 o At least three jets with $E_T^{jet}(\mathrm{Breit}) > 5~\mathrm{GeV}$

and $-1 < \eta^{jet}({
m Lab}) < 2.5, M_{
m 3jets} > 25~{
m GeV}$

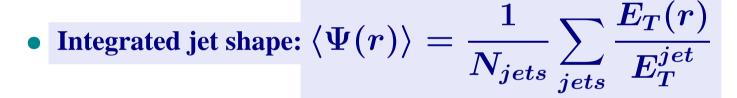
ZEUS

 \rightarrow NLO calculations ($\mathcal{O}(\alpha_s^3)$): good description of the data over the whole range $10 < Q^2 < 5000 \, \mathrm{GeV^2}$

proton

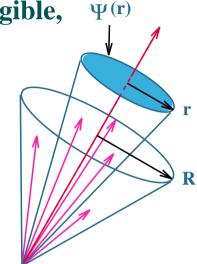
 $\rightarrow \alpha_s(M_Z) = 0.1179 \pm 0.0013 \text{ (stat.)}_{-0.0046}^{+0.0028} \text{ (exp.)}_{-0.0046}^{+0.0064} \text{ (th.)}$

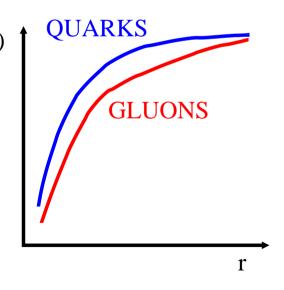
 $\mathcal{O}(\alpha_s^2)$

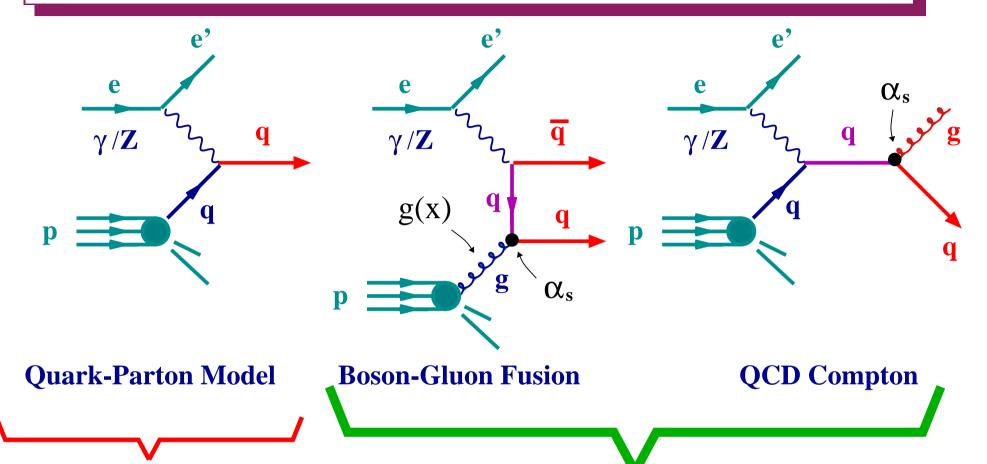

proton

Jet Substructure in NC DIS

Jet Substructure in Neutral Current Deep Inelastic Scattering


• At sufficiently high E_T^{jet} , where fragmentation effects become negligible, the jet substructure is expected to be calculable by pQCD


- Measurements of jet substructure allow investigations on
- → the differences between quark- and gluon-initiated jets and
- \rightarrow the dynamics of the different partonic final states,
- \rightarrow as well as determinations of α_s


Average fraction of the jet's transverse energy that lies inside a circle in the η - ϕ plane of radius r concentric with the jet axis

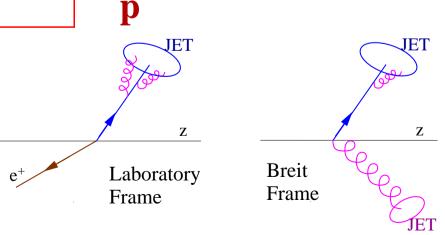
- QCD predicts that gluon jets are broader than quark jets
 - $\Rightarrow \Psi_{QUARKS}(r) > \Psi_{GLUONS}(r)$

Jet Substructure in Neutral Current Deep Inelastic Scattering

One-jet events

Enriched in quark jets

Two-jet events


Higher content of gluon jets

Jet Substructure in Neutral Current Deep Inelastic Scattering

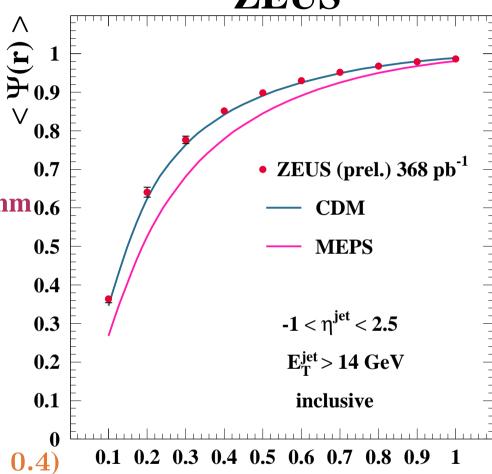
- Comparison with calculations:
- \rightarrow Monte Carlo generators (ARIADNE-CDM, LEPTO-MEPS) approximate the substructure of jets with parton showers
- → Fixed-order QCD calculations: at lowest order a jet consists of one parton (no structure); higher-order terms give the non-trivial contributions
- E.g. the lowest non-trivial-order contribution for one-jet events is given by $\mathcal{O}(\alpha\alpha_s)$ pQCD calculations

$$\langle 1 - \Psi(r)
angle = rac{\int dE_T \; E_T [d\sigma(ep
ightarrow 2 ext{partons})/dE_T]}{E_T^{jet} \; \sigma_{ ext{jet}}(E_T^{jet})}$$

 NLO QCD calculations of jet substructure can be made in the laboratory frame since it is possible to have 3 partons in the same jet (not possible in the Breit frame)

 α_{s}

Measurements of Jet Substructure in NC DIS


ullet Measurement of $\langle \Psi(r)
angle$ for an inclusive sample of jets in NC DIS with $Q^2 > 125~{
m GeV}^2$

using HERA II data: $\mathcal{L}=368~\mathrm{pb^{-1}}$

ullet Jets are defined using the k_T -cluster algorithm $_{0.6}$ (longitudinally invariant mode) in the $_{0.5}$ laboratory frame and required to have $_{0.4}$

$$E_T^{jet}(ext{Lab}) > 14 ext{ GeV} \ -1 < \eta^{jet}(ext{Lab}) < 2.5$$

ullet The measurements of $\langle \Psi(r)
angle$ have been corrected for detector effects (< 10% for r > 0.4)

- Comparison to QCD-inspired Monte models:
- → the colour-dipole model (CDM, ARIADNE) reproduces the data well
- → matrix-elements plus parton-showers (MEPS, LEPTO) predict too-broad jets

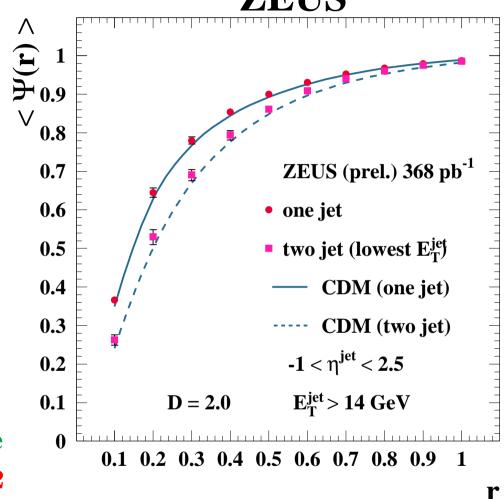
r

Measurements of Jet Substructure in NC DIS

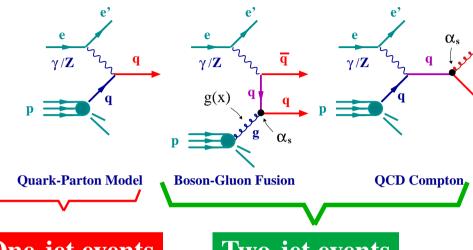
ullet Measurement of $\langle \Psi(r)
angle$ in NC DIS with $Q^2>125~{
m GeV^2}$ using ${\cal L}=368~{
m pb^{-1}}$ for two samples of jets:

One-jet events

$$E_T^{jet} > 14$$
 GeV, $-1 < \eta^{jet} < 2.5$

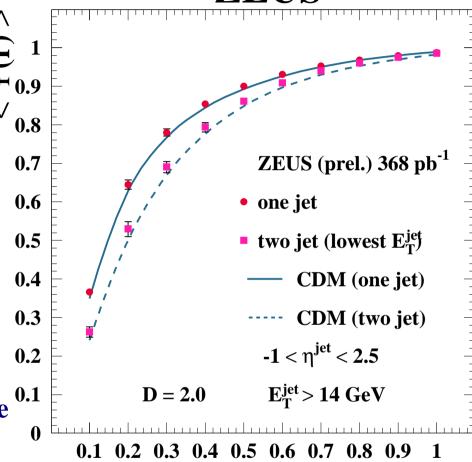

Two-jet events

both jets are required to have


$$E_T^{jet} > 14$$
 GeV, $-1 < \eta^{jet} < 2.5$

and to be close to each other in the η - ϕ plane distance jet-jet= $\sqrt{\Delta\eta^2+\Delta\phi^2}\leq D=\mathbf{2}$

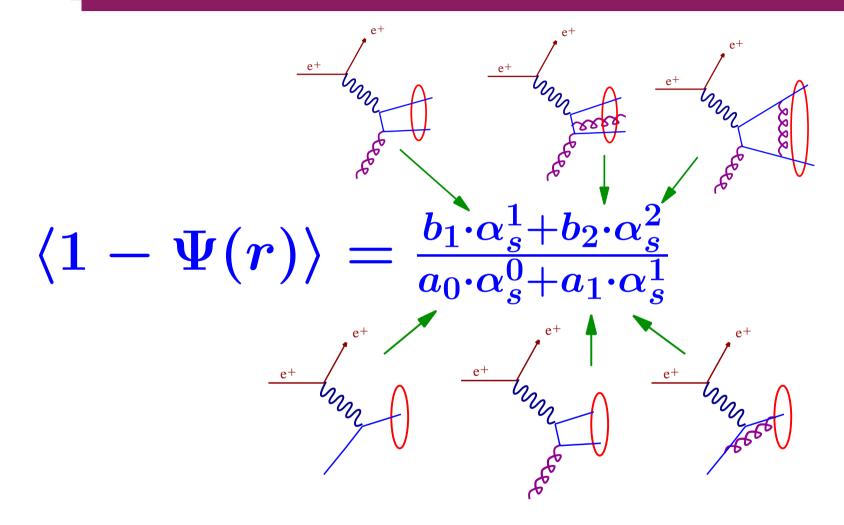
o the jet with lowest E_T^{jet} is considered o The lowest- E_T^{jet} jet in the two-jet event sample is BROADER



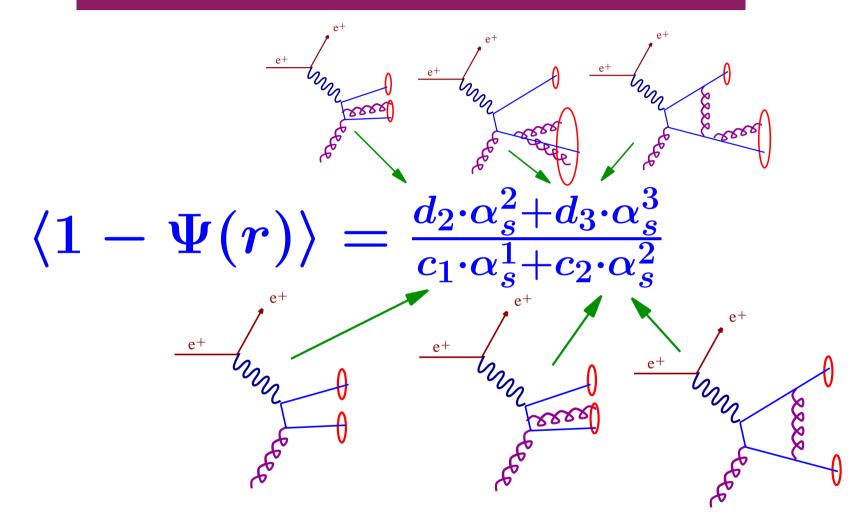
One-jet events

Enriched in quark jets

Two-jet events


• Higher content of gluon jets

• The observation that the lowest- E_T^{jet} jet in the observation that the lowest- E_T^{jet} jet in the two-jet event sample is BROADER than that of the one-jet sample is consistent with a higher gluon content in two-jet events


 \rightarrow The colour-dipole model (CDM, ARIADNE) reproduces the data reasonably well; in particular, the difference in jet shape between the two samples

NLO QCD calculations for inclusive/one-jet production

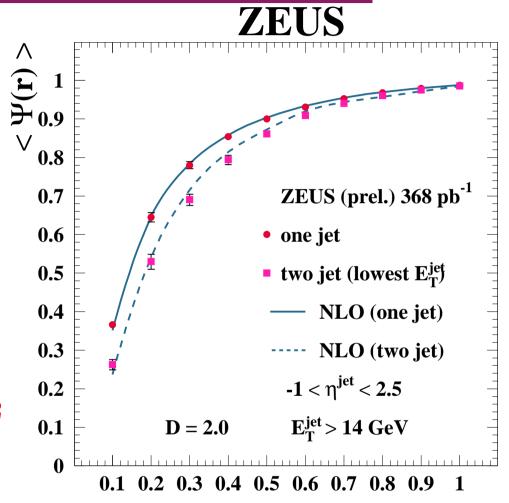
- DISENT program: $\alpha_s(M_Z)=0.118; \mu_R=\mu_F=Q;$ CTEQ6 proton PDFs
- ightarrow Dominant theoretical uncertainty: terms beyond NLO, <5% for $r\geq0.2$

NLO QCD calculations for two-jet production

• NLOJET++ program: $\alpha_s(M_Z)=0.118; \mu_R=\mu_F=Q;$ CTEQ6 proton PDFs

Measurements of Jet Substructure in NC DIS vs NLO QCD

ullet Measurement of $\langle \Psi(r)
angle$ in NC DIS with $Q^2>125~{
m GeV^2}$ using ${\cal L}=368~{
m pb^{-1}}$ for two samples of jets:

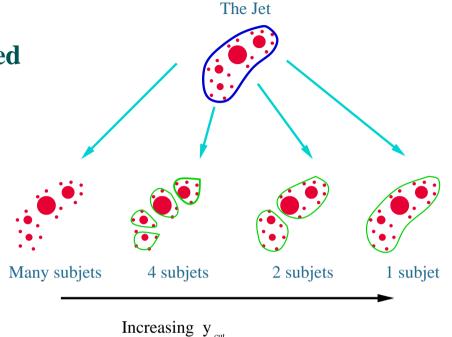

One-jet events

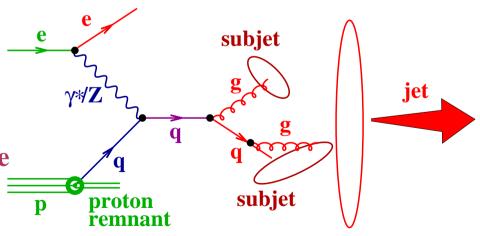
$$E_T^{jet} > 14$$
 GeV, $-1 < \eta^{jet} < 2.5$

Two-jet events

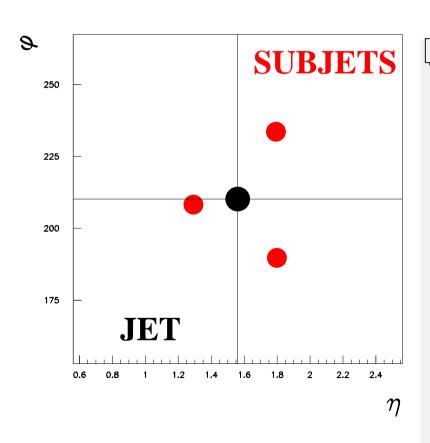
$$E_T^{jet}>14$$
 GeV, $-1<\eta^{jet}<2.5$ distance jet-jet= $\sqrt{\Delta\eta^2+\Delta\phi^2}\leq D=2$

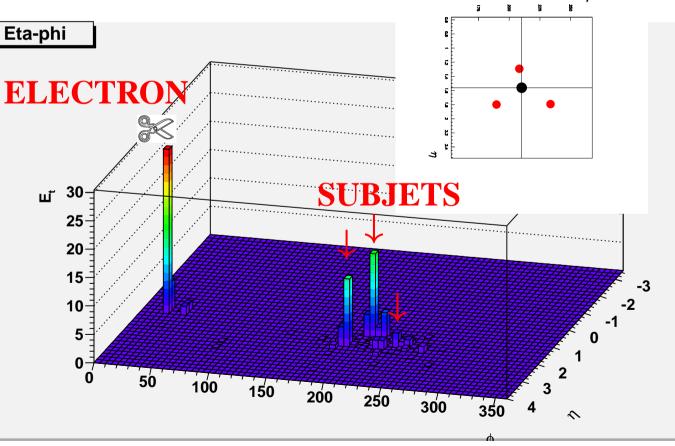
ightarrow the jet with lowest E_T^{jet} is considered


NLO QCD calculations corrected for hadronisation effects (<10% for $r\geq0.4$) reproduce the data reasonably well; in particular, the difference in jet shape between the two samples

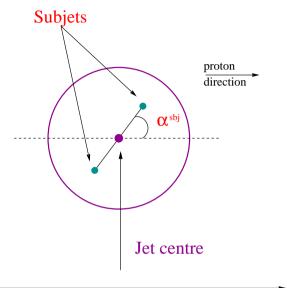

Jet Substructure in NC DIS: subjets

- The internal structure of jets has also been studied using the subjet topology
- Subjets are resolved within a jet by reapplying the k_T -cluster algorithm on all the particles belonging to the jet until for every pair of particles the distance between clusters is above


$$d_{cut} = y_{cut} \cdot (E_T^{jet})^2$$


- \rightarrow all remaining clusters are called subjets
- \rightarrow the subjet multiplicity depends upon the resolution parameter y_{cut}
- The distributions of subjets are sensitive to the pattern of parton radiation

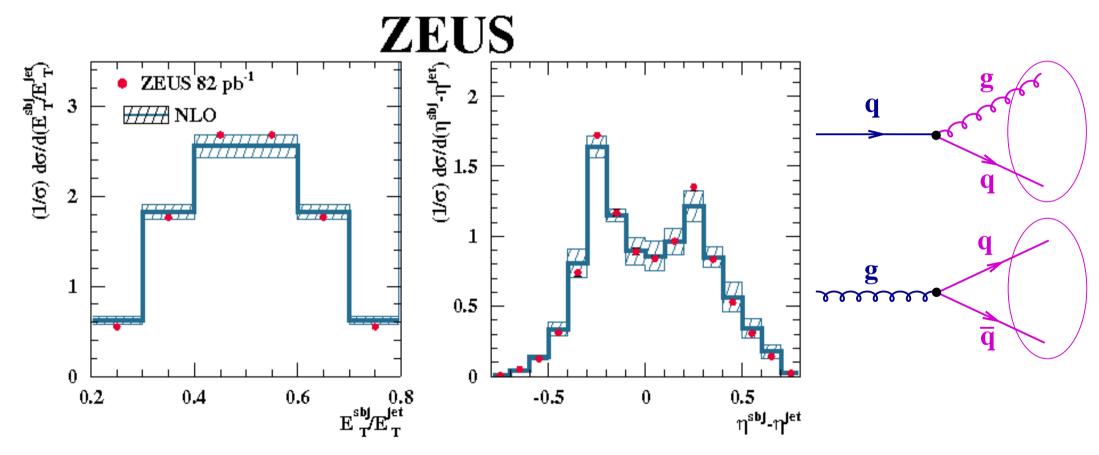
NC DIS event with three subjets at $y_{cut} = 0.01$



Measurements of Subjet Distributions in NC DIS

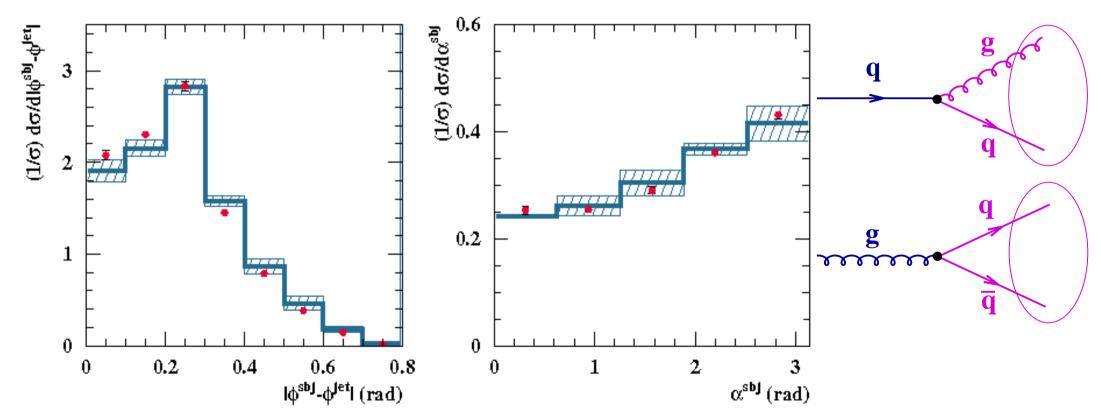
 \bullet The pattern of QCD radiation from a primary parton has $^{\phi}$ been studied by measuring normalised cross sections as functions of subjet variables

$$E_T^{sbj}/E_T^{jet}, \eta^{sbj}-\eta^{jet}, \phi^{sbj}-\phi^{jet}$$
 and $lpha^{sbj}$


- Measurements of the normalised cross sections were done in NC DIS for $Q^2>125~{\rm GeV^2}$:
- ightarrow Jets are defined using the k_T -cluster algorithm in the laboratory frame; at least one jet with $E_T^{jet}>14$ GeV and $-1<\eta^{jet}<2.5$
- \rightarrow Selected sample of jets: jets with exactly TWO subjets at $y_{cut}=0.05$
- Comparison to NLO $(\mathcal{O}(\alpha_s^2))$ QCD calculations using DISENT:
- → MRST99 set of proton PDFs
- $ightarrow lpha_s(M_Z) = 0.1175$
- ightarrow renormalisation and factorisation scales, $\mu_R=\mu_F=Q$
- → corrected for hadronisation effects

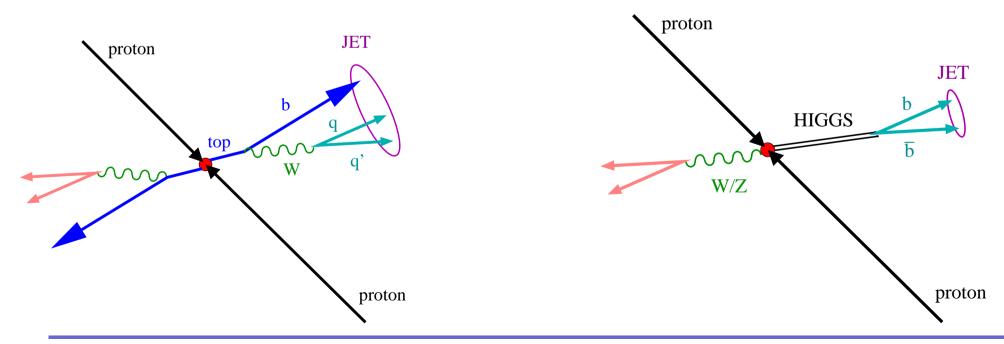
n

Measurements of Subjet Distributions in NC DIS vs NLO


• Measurements of the normalised cross sections for subjet production as functions of E_T^{sbj}/E_T^{jet} and $\eta^{sbj}-\eta^{jet}$ vs NLO QCD calculations

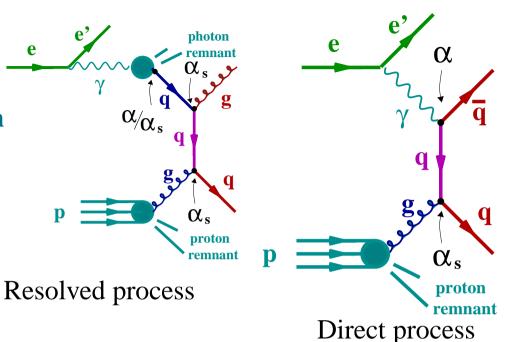
ightarrow NLO QCD calculations describe the data within $\pm 10\%$

Measurements of Subjet Distributions in NC DIS vs NLO


• Measurements of the normalised cross sections for subjet production as functions of $\phi^{sbj} - \phi^{jet}$ and α^{sbj} vs NLO QCD calculations

ightarrow NLO QCD calculations describe the data within $\pm 10\%$

Jet substructure as a tool in hadron-hadron colliders

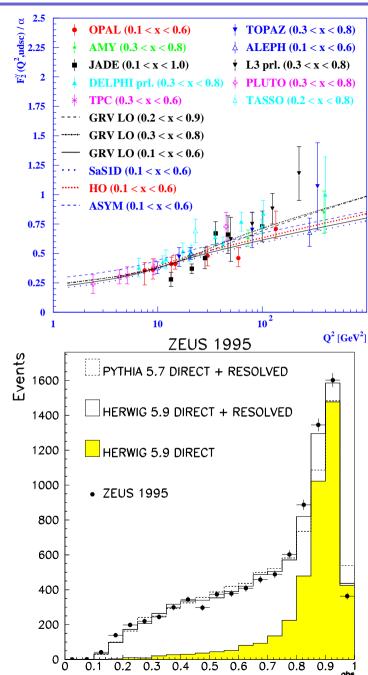

- Subjets and jet shapes: useful tool to tag quark and gluon initiated jets
- \rightarrow with the aim of improving searches of new particles
- Subjets: new strategies being developed for boosted systems at LHC
 - → studies of hadronic top decays
 - → searches for the Higgs boson or supersymmetric particles

Jets in photoproduction

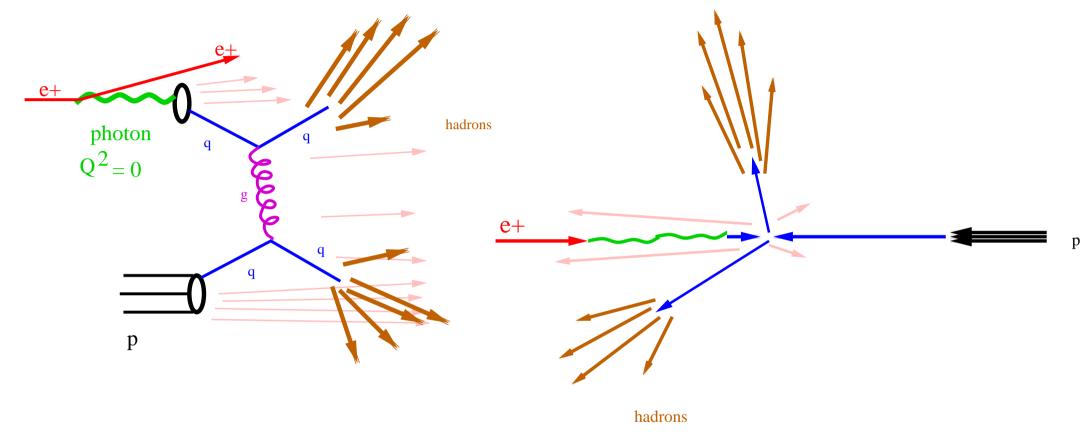
Photoproduction of Jets

- \bullet Production of jets in γp collisions has been measured via ep scattering at $Q^2\approx 0$
- At lowest order QCD, two hard scattering processes contribute to jet production \Rightarrow

• pQCD calculations of jet cross sections

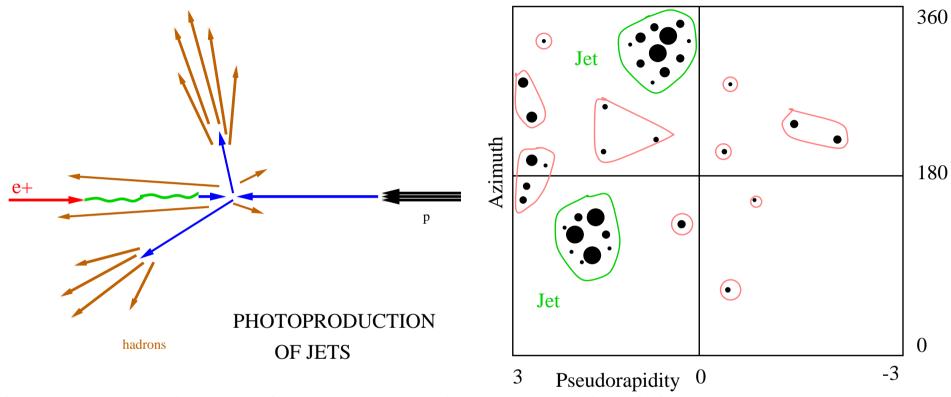

$$\sigma_{jet} = \sum_{a,b} \int_0^1 dy \ f_{\gamma/e}(y) \int_0^1 dx_{\gamma} \ f_{a/\gamma}(x_{\gamma},\mu_{F\gamma}^2) \int_0^1 dx_p \ f_{b/p}(x_p,\mu_{Fp}^2) \ \hat{\sigma}_{ab o jj}$$

longitudinal momentum fraction of γ/e^+ (y), parton a/γ (x_{γ}) , parton $b/{
m proton}$ (x_p)


- $\rightarrow f_{\gamma/e}(y) = {
 m flux} \ {
 m of photons} \ {
 m in the positron} \ (WW \ {
 m approximation})$
- $\to f_{a/\gamma}(x_\gamma,\mu_{F\gamma}^2)=$ parton densities in the photon (for direct processes $\delta(1-x_\gamma)$)
- $\rightarrow f_{b/p}(x_p,\mu_{Fp}^2) = \text{parton densities in the proton}$
- $\rightarrow \sigma_{ab \rightarrow jj}$ subprocess cross section; short-distance structure of the interaction

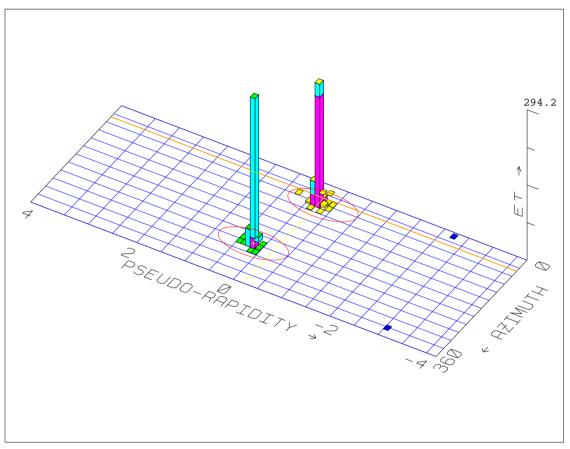
Photoproduction of Jets

- Measurements of jet photoproduction provide
- → Test of NLO QCD predictions based on current parametrisations of the proton and photon PDFs
- → Dynamics of resolved and direct processes
- ightarrow Photon structure: information on quark densities from F_2^{γ} in e^+e^- ; gluon density poorly constrained. Jet cross sections in photoproduction are sensitive to both the quark and gluon densities in the photon at larger scales $\mu_{F\gamma}^2 \sim E_{T,iet}^2 \ (200-10^4 \ {\rm GeV}^2)$
- ightarrow Proton structure: well constrained by DIS except for the gluon density at high x. Jet cross sections in γp are sensitive to parton densities at x_p up to ~ 0.6
- Observable to separate the contributions: the fraction of the photon's energy participating in the production of the dijet system $x_{\gamma}^{OBS} = \frac{1}{2E_{\gamma}} \sum_{i=1}^{2} E_{T}^{jet_{i}} e^{-\eta^{jet_{i}}}$



Variables for Jet Search in ep collisions at low Q^2 (Photoproduction)

- ullet The kinematics of ep collisions at low Q^2 is similar to that of par p collisions
- \Rightarrow Input to the jet algorithm: $E_{T,i}$, η_i and ϕ_i for every hadron i
- \Rightarrow "distance" between hadrons i and j: $\sqrt{\Delta\eta_{ij}^2 + \Delta\phi_{ij}^2}$


The longitudinally invariant k_T algorithm for photoproduction

- Infrared and collinear safe to all orders in perturbative QCD
- Invariant under longitudinal boosts (along the beam axis)
- Suppression of beam remnant jet contributions through the use of transverse energies and by not forcing all the particles to be assigned to jets (nor requiring a certain jet shape)
- Small experimental and theoretical uncertainties

Combining the hadrons to build up jets: cone algorithms

- Maximizing the total transverse energy of the hadrons within a cone of fixed size
- Three-step procedure:
 - → constructing the seeds (starting positions for the cone)
 - → moving the cone around until a stable position is found
 - → dealing with overlapping cones(to merge or not to merge)

- ullet They have been applied mainly to $par{p}$ collisions
- The iterative cone algorithm has been the standard
 - \rightarrow distance definition: $d_{iJ} \equiv \sqrt{(\eta_i \eta_J)^2 + (\phi_i \phi_J)^2}$
 - ightarrow cone axis: $\eta_J \equiv \frac{1}{E_T} \sum_i E_{T,i} \cdot \eta_i, \quad \phi_J \equiv \frac{1}{E_T} \sum_i E_{T,i} \cdot \phi_i, \quad E_T = \sum_i E_{t,i}$

soft-gluon radiation (divergence!)

g (soft)

collinear splitting

(divergence!)

Fulfilling the requirements (II)

• The cone algorithm is infrared and collinear safe at NLO

Each of them defines a cone \Rightarrow Two jets

 \rightarrow Second situation: three particles (partons)

the two collinear partons will lie in the same cone

 \Rightarrow Two jets

 \Rightarrow Two jets

The jet axes and transverse energies will differ from the the values found in the 1st or 2nd situation by a quantity that $\to 0$ as $E(g) \to 0$!

• The final result is the same in each configuration!

Dijet Photoproduction: the dynamics of resolved and direct processes

DIRECT

PROCESSES

quark exchange

$$\cos \theta^* \equiv tanh(\frac{1}{2}(\eta^{jet,1} - \eta^{jet,2}))$$

- \rightarrow for two-to-two parton scattering θ^* coincides with the scattering angle in the dijet CMS
- QCD predicts different dijet angular distributions for resolved and direct:
- → Resolved (gluon-exchange dominated)

$$|d\sigma/d|\cos heta^*|\sim rac{1}{(1-|\cos heta^*|)^2}$$

→ Direct (quark-exchange only)

$$|d\sigma/d|\cos heta^*|\sim rac{1}{(1-|\cos heta^*|)^1}$$

• The dijet angular distribution $d\sigma/d|\cos\theta^*|$ for $x_\gamma^{OBS}<0.75$ ("resolved") should be steeper than that of $x_\gamma^{OBS}>0.75$ ("direct") as $|\cos\theta^*|\to1$

q

Dijet Photoproduction: the dynamics of resolved and direct processes

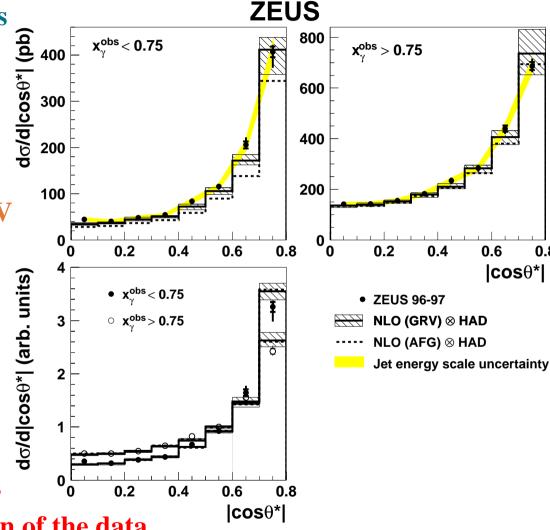
• Measurement of the dijet differential cross

section
$$d\sigma/d|\cos\theta^*|$$
 for dijet events with $E_T^{jet,1}>14$ GeV, $E_T^{jet,2}>11$ GeV $-1<\eta^{jet}<2.4$ (both jets)

in the kinematic region

$$Q^2 < 1~{
m GeV^2}$$
 and $134 < W_{\gamma p} < 277~{
m GeV}$

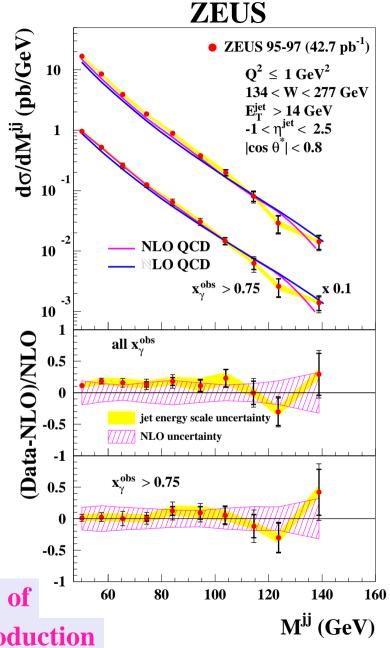
Phase-space region:


$$|\cos heta^*| < 0.8 \;\;, \;\; M_{JJ} > 42 \; {
m GeV} \ 0.1 < {1 \over 2} (\eta^{jet,1} + \eta^{jet,2}) < 1.3$$

- Comparison with NLO QCD calculations:
- \rightarrow High- x_{γ}^{OBS} ("direct"): NLO describes

the shape and normalisation of the data

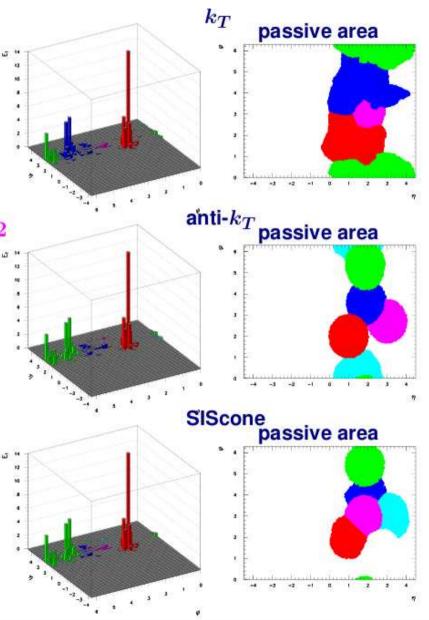
 \rightarrow Low- x_{γ}^{OBS} ("resolved"): NLO describes


the shape and (reasonably) the normalisation of the data

• The dijet angular distribution of the "resolved" sample is steeper than that of "direct"

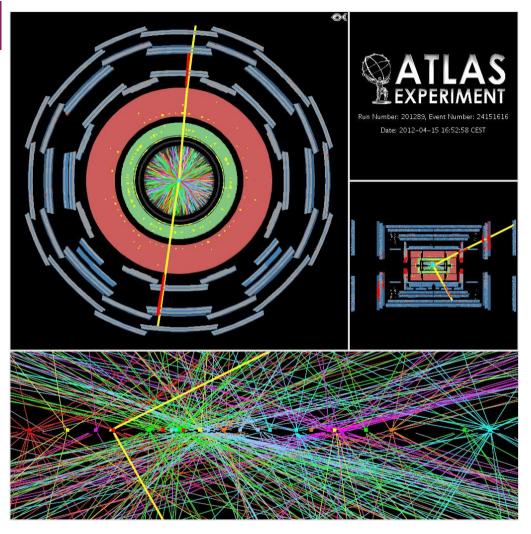
High- M_{JJ} Dijet Photoproduction

- ullet Measurement of the dijet differential cross section $d\sigma/dM_{JJ}$ in the range $47 < M_{JJ} < 160$ GeV for dijet events with $E_T^{jet} > 14$ GeV, $-1 < \eta^{jet} < 2.5$ and $|\cos heta^*| < 0.8$
- Small experimental uncertainties:
- ightarrow jet energy scale known to $1\% \Rightarrow 5\%$ on $d\sigma/dM_{JJ}$
- Small theoretical uncertainties:
- \rightarrow higher-order terms (varying μ_R) below 15%
- $ightarrow \gamma$ PDFs (GRV-HO,AFG-HO) below 10%
 - ightarrow resolved processes suppressed at high M_{JJ}
- \rightarrow small hadronisation corrections, below 5%
- NLO QCD calculations describe the shape and normalisation of the measurements well
 - ightarrow Validity of the pQCD description of the dynamics of parton-parton and γ -parton interactions in photoproduction



New jet algorithms

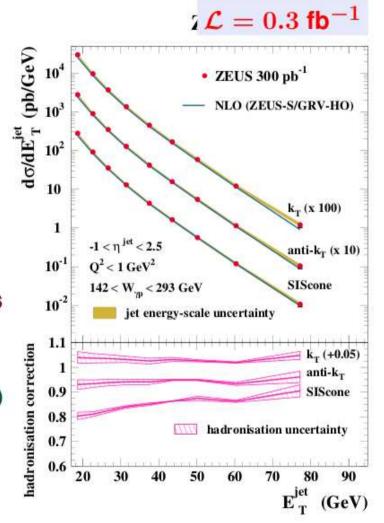
- Tests of pQCD with jets require infrared- and collinear-safe jet algorithms:
 - \rightarrow performance of k_T cluster algorithm in longitudinally invariant inclusive mode (S Catani, S Ellis & D Soper) tested extensively at HERA:
 - → stringent tests of pQCD: good description of data for different jet radii
 - → good performance of algorithm: small theoretical uncertainties / hadronisation corrections
 - → new measurements in photoproduction presented here
- New infrared- and collinear-safe jet algorithms:
 - ightarrow anti- k_T (M Cacciari, G Salam & G Soyez) provides pprox circular jets
 - ★ experimentally desirable
 - → SIScone (G Salam & G Soyez) seedless cone algorithm provides infrared- and collinear-safe calculations
 - ★ theoretically necessary
- New studies at HERA:
 - ightharpoonup test performance of $anti-k_T$ and SIScone in well-understood hadron-induced reaction:
 - st comparison to measurements based on $m{k_T}$
 - * comparison of measurements and NLO QCD calculations
 - * study of theoretical uncertainties and hadronisation corrections


New jet algorithms

- New infrared- and collinear-safe jet algorithms:
 - ightarrow anti- k_T (M Cacciari, G Salam & G Soyez) and SIScone (G Salam & G Soyez)
- Cluster algorithms:
 - $ightarrow d_{ij}\!=\!\min[(E_{T,\mathrm{B}}^i)^{2p},(E_{T,\mathrm{B}}^j)^{2p}]\!\cdot\!\Delta R^2\!/\!R^2$ with $p\!=\!1~(-1)$ for k_T (anti- k_T)
 - ightarrow anti- k_T keeps infrared and collinear safety and provides pprox circular jets (experimentally desirable)
- Cone algorithms:
 - → seedless cone algorithm produces also jets with well-defined area and is infrared and collinear safe (theoretically necessary)

Benefits of the new jet algorithms

- Anti- k_t and SISCONE jet algorithms provide jets with better control on the shape (\approx circular) and area (dictated by the jet radius R) than with the k_t jet algorithm
- Essential to control and suppress the energy contributions from particles that fall into the jet but originate from
- → the "underlying event" (hadrons from the same proton-proton collision but unrelated to the hard interaction (a proton is an extended object)
- → additional soft proton-proton interactions overlaid with the interesting one (pile-up)



 $Z \to \mu^+\mu^-$ event candidate with 25 (!!) reconstructed vertices High pile-up environment in 2012

Inclusive Jet Photoproduction

$ep \rightarrow e + \text{jet} + X$: inclusive-jet cross sections

- Kinematic region: $Q^2 < 1$ GeV² and 0.2 < y < 0.85
- Jet search: k_T , anti- k_T and SIScone in laboratory frame
- ullet At least one jet with $E_T^{
 m jet}\!>\!17~{
 m GeV}$ and $-1\!<\!\eta^{
 m jet}\!<\!2.5$
- Experimental uncertainties:
 - \rightarrow systematic: typically below $\pm 5\%$
 - ightarrow energy scale $\pm 1\%$ (!): $\sim \pm 5~(10)\%$ at low (high) $E_T^{\rm jet}$
- Comparison to NLO predictions (Klasen et al):
 - → good description of data by NLO prediction
 - \rightarrow validity of the description of the dynamics of jet photoproduction at $\mathcal{O}(\alpha_s^2)$
- Theoretical uncertainties:
 - ightarrow higher orders: $\pm 10~(4)\%$ at low (high) $E_T^{
 m jet}$ (k_T /anti- k_T) $\pm 14~(7)\%$ at low (high) $E_T^{
 m jet}$ (SIScone)
 - \rightarrow proton PDFs: $\pm 1 \ (5)\%$ at low (high) $E_T^{\rm jet}$
 - \rightarrow hadronisation: $<\pm3\%$; $\alpha_s(M_Z)$: $<\pm2\%$
 - ightarrow photon PDFs: $\pm 9-10~(1-3)\%$ at low (high) $E_T^{
 m jet}$
- ightarrow Measurements provide direct sensitivity to $lpha_s$ and gluon density with small experimental and theoretical uncertainties $_{
 m ZEUS\ Collab,\ DESY-12-045}$

Inclusive Jet Photoproduction and Determination of α_s

- ullet The energy-scale dependence of the coupling was determined from the data ullet results in good agreement with predicted running of $lpha_s$ over a wide range in $E_T^{
 m jet}$
- ullet Values of $lpha_s(M_Z)$ were extracted from the measured cross sections for $21 < E_T^{
 m jet} < 71$ GeV:

anti- k_T :

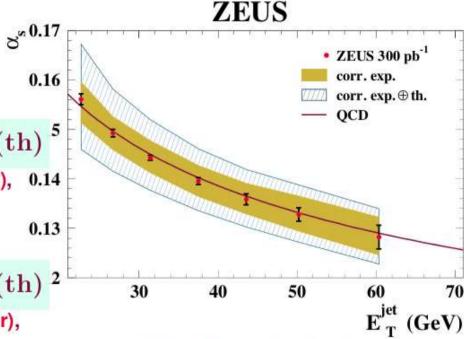
$$\alpha_s(M_Z) = 0.1198^{+0.0023}_{-0.0022} \, (\exp)^{+0.0041}_{-0.0034} \, (\mathrm{th})$$

uncert: $^{+1.9}_{-1.8}\%$ (exp), $\pm 1.0\%$ (pPDFs), $\pm 0.4\%$ (hadr), 0.14 $^{+2.3}_{-2.4}\%$ (HO), $^{+2.2}_{-0.9}\%$ (γ PDFs), $^{+3.9}_{-3.4}\%$ (total) 0.13

SIScone:

$$\alpha_s(M_Z) = 0.1196^{+0.0022}_{-0.0021} (\exp)^{+0.0046}_{-0.0043} (th)^2$$

uncert: $\pm 1.8\%$ (exp), $\pm 1.0\%$ (pPDFs), $\pm 0.2\%$ (hadr),

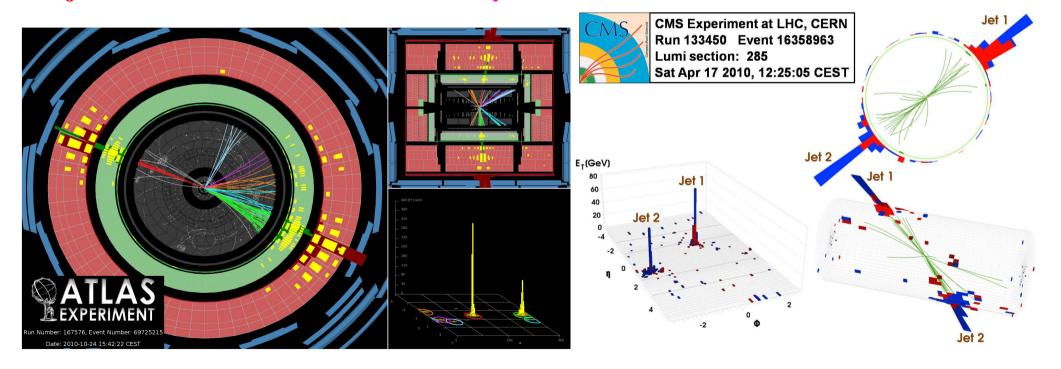

$$^{+3.2}_{-3.3}\%$$
 (HO), $^{+1.9}_{-0.9}\%$ (γ PDFs), $^{+4.3}_{-4.0}\%$ (total)

k_T :

$$\alpha_s(M_Z) = 0.1206^{+0.0023}_{-0.0022} (\exp)^{+0.0042}_{-0.0035} (\text{th})$$

uncert: $^{+1.9}_{-1.8}\%$ (exp), $\pm 1.0\%$ (pPDFs), $\pm 0.4\%$ (hadr), $^{+2.4}\%$ (HO), $^{+2.3}\%$ (exp), $^{+4.0}\%$ (tetal)

$$^{+2.4}_{-2.5}\%$$
 (HO), $^{+2.3}_{-0.9}\%$ (γ PDFs), $^{+4.0}_{-3.4}\%$ (total)



 $ightharpoonup lpha_s(M_Z)$ from inclusive-jet cross sections in PHP with different jet algorithms are consistent with each other and have similar precision

ZEUS Collab, DESY-12-045

Not yet the end

- The "jet" saga continues this afternoon
 - \rightarrow jets in hadron-hadron colliders \rightarrow by Aidan Robson

